MENU

Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > New sensors to combat the proliferation of bacteria in very high-humidity environments

Abstract:
The engineer Aitor Urrutia has received his PhD with these devices that combine nanotechnology and fibre optics for use in hospitals or on industrial premises.

New sensors to combat the proliferation of bacteria in very high-humidity environments

Gipuzkoa, Spain | Posted on January 23rd, 2016

The Telecommunications Engineer Aitor Urrutia-Azcona has designed some humidity sensors with anti-bacterial properties that combat the proliferation of micro-organisms in environments where the humidity level is very high, such as hospitals and industrial premises for foodstuffs or pharmaceutical products. These devices combining nanotechnology and fibre optics are part of his PhD thesis read at the Public University of Navarre (NUP/UPNA).

“Humidity is one of the most controlled and most monitored aspects nowadays owing to its great importance in a whole range of industrial processes or in areas such as food monitoring, air quality, biomedicine or chemistry,” explained Aitor Urrutia, who is from Auritz/Burguete, but who currently resides in Irúñea-Pamplona. “Yet problems remain in terms of measuring and monitoring it in specific situations such as environments where the humidity level is very high”.

The proliferation of bacteria in such environments where the humidity is very high is common and this leads to the formation of “biofilms” which are ecosystems made up of these microorganisms attached to a surface. This leads to the problem known as biofouling which causes “the deterioration of many materials and devices, affects their performance and cuts their service lifetimes. Right now, the costs arising out of biofouling are very high mainly because of the maintenance work or replacement of equipment,” pointed out Urrutia.

When considering this widespread problem, in his PhD thesis Aitor Urrutia set about building new humidity sensors that would have antibacterial properties for applications that function in environments where the humidity is high and which are conducive to bacterial growth, and thus prevent the creation of biofilms and overcome biofouling.

Combining nanotechnology and fibre optics

To develop the various humidity sensors, Aitor Urrutia based himself on the combination of the latest advances in nanotechnology (new materials and new manufacturing techniques for coatings and nanoparticles) over new fibre optic configurations. “The sensors developed are made up of an optic structure to which coatings with a thickness of less than one micron are applied,” pointed out the new PhD holder. “Thanks to the embedded silver nanoparticles included, these coatings provide the sensors with two additional functionalities: antibacterial properties and increased sensitivity. That way, the new sensors developed have longer service lifetimes and perform better”.

What is more, these fibre optic sensors offer additional advantages such as “their biocompatibility, immunity with respect to electromagnetic interference, their low cost, size and weight, and the possibility of long-distance measuring,” according to Urrutia, whose PhD thesis was supervised by the lecturers in the Department of Electrical and Electronic Engineering Francisco J. Arregui-San Martín and Javier Goicoechea-Fernández.

The new humidity sensors developed could be integrated into a wide variety of sectors, such as, for example, health centres and hospitals to monitor human respiration, among other applications; on premises and in chambers used in processes in the foodstuff and pharmaceutical industry; in biotechnology and home automation; and in the monitoring of structures or cavities that are difficult to access, such as cooling towers or off-shore facilities.

Full bibliographic information
P. J. Rivero, A. Urrutia, J. Goicoechea, F. J. Arregui, (2015) "Nanomaterials for functional textiles and fibers," Nanoscale Research Letters 10 (1) 501: 1-2,. doi:10.1186/s11671-015-1195-6

####

About Elhuyar Fundazioa
Elhuyar Fundazioa is a Science and Technology Foundation. Its first mission is to make science accessible to ordinary people and work with our language euskara. Within our product we have dictionaries, University books, web-pages, journals, radio programs and TV programs.

For more information, please click here

Contacts:
Oihane Lakar Iraizoz
0034-943-363040
o.lakar@elhuyar.com

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Nanomedicine

Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

How a milk component could eliminate one of the biggest challenges in treating cancer and other disease, including rare diseases: Nebraska startup to use nanoparticles found in milk to target therapeutics to specific cells January 17th, 2025

Sensors

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Discoveries

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Leading the charge to better batteries February 28th, 2025

Quantum interference in molecule-surface collisions February 28th, 2025

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

Industrial

Quantum interference in molecule-surface collisions February 28th, 2025

Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022

Nanotubes: a promising solution for advanced rubber cables with 60% less conductive filler June 1st, 2022

Protective equipment with graphene nanotubes meets the strictest ESD safety standards March 25th, 2022

Photonics/Optics/Lasers

Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024

Researchers succeed in controlling quantum states in a new energy range December 13th, 2024

Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project