MENU

Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Application of Nanofibrous Scaffolds; Approach to Grow, Convert Stem Cells into Cells to Cure Diseases

Abstract:
Iranian researchers produced laboratorial samples of scaffolds made of nanofibers which have been designed to produce effective cells from stem cells to cure diseases, including diabetes and liver diseases.

Application of Nanofibrous Scaffolds; Approach to Grow, Convert Stem Cells into Cells to Cure Diseases

Tehran, Iran | Posted on January 25th, 2016

Treatment of malfunctioning organs such as insulin producing cells in the treatment of diabetes is one of the unsolved mysteries in the field of medicine. In many cases, organ transplant is suggested as the optional therapy in the treatment of liver, lung or pancreas. However, there are problems in this therapeutic method such as the few number of compatible transplant organs, surgery side effects, transplant rejection and expensive cost; therefore, therapeutic cells can be considered as a replacement to overcome these problems.

Human induced pluripotent stem cells (hiPSCs) are potentially able to be distinguished from all human tissue cells. Therefore, it is known as an unlimited source for cell therapy in clinical applications. The formation of definitive endoderm cell is the first and the most important step in the growth of organs such as pancreas and liver in vertebrates. Therefore, the production of this cell guarantees production of all types of effective cells in the treatment of diseases related to organs such as diabetes and liver. Therefore, the aim of the research was to produce initial endoderm cells with high efficiency from hiPSCs on nanofibrous scaffolds.

Results of the research may help distinguish of stem cells from hepatocytes and insulin producing cells to cure liver diseases and diabetes. Based on the results, the iPSCs produced in this research can be distinguished from definitive endoderm cells with high efficiency.

Results of the research have been published in Journal of Biomedical Research, vol. 102, issue 11, 2014, pp. 4027-4036.

####

For more information, please click here

Copyright © Fars News Agency

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Nanomedicine

Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

How a milk component could eliminate one of the biggest challenges in treating cancer and other disease, including rare diseases: Nebraska startup to use nanoparticles found in milk to target therapeutics to specific cells January 17th, 2025

Discoveries

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Leading the charge to better batteries February 28th, 2025

Quantum interference in molecule-surface collisions February 28th, 2025

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

Nanobiotechnology

Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

How a milk component could eliminate one of the biggest challenges in treating cancer and other disease, including rare diseases: Nebraska startup to use nanoparticles found in milk to target therapeutics to specific cells January 17th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project