Home > Press > Scientists guide gold nanoparticles to form 'diamond' superlattices: DNA scaffolds cage and coax nanoparticles into position to form crystalline arrangements that mimic the atomic structure of diamond
![]() |
This is a schematic illustration of the experimental strategy: Double stranded DNA bundles (gray) form tetrahedral cages. Single stranded DNA strands on the edges (green) and vertices (red) match up with complementary strands on gold nanoparticles. This results in a single gold particle being trapped inside each tetrahedral cage, and the cages binding together by tethered gold nanoparticles at each vertex. The result is a crystalline nanoparticle lattice that mimics the long-range order of crystalline diamond. The images below the schematic are (left to right): a reconstructed cryo-EM density map of the tetrahedron, a caged particle shown in a negative-staining TEM image, and a diamond superlattice shown at high magnification with cryo-STEM. CREDIT: Brookhaven National Laboratory |
Abstract:
Using bundled strands of DNA to build Tinkertoy-like tetrahedral cages, scientists at the U.S. Department of Energy's Brookhaven National Laboratory have devised a way to trap and arrange nanoparticles in a way that mimics the crystalline structure of diamond. The achievement of this complex yet elegant arrangement, as described in a paper published February 5, 2016, in Science, may open a path to new materials that take advantage of the optical and mechanical properties of this crystalline structure for applications such as optical transistors, color-changing materials, and lightweight yet tough materials.
"We solved a 25-year challenge in building diamond lattices in a rational way via self-assembly," said Oleg Gang, a physicist who led this research at the Center for Functional Nanomaterials (CFN) at Brookhaven Lab in collaboration with scientists from Stony Brook University, Wesleyan University, and Nagoya University in Japan.
The scientists employed a technique developed by Gang that uses fabricated DNA as a building material to organize nanoparticles into 3D spatial arrangements. They used ropelike bundles of double-helix DNA to create rigid, three-dimensional frames, and added dangling bits of single-stranded DNA to bind particles coated with complementary DNA strands.
"We're using precisely shaped DNA constructs made as a scaffold and single-stranded DNA tethers as a programmable glue that matches up particles according to the pairing mechanism of the genetic code-A binds with T, G binds with C," said Wenyan Liu of the CFN, the lead author on the paper. "These molecular constructs are building blocks for creating crystalline lattices made of nanoparticles."
The difficulty of diamond
As Liu explained, "Building diamond superlattices from nano- and micro-scale particles by means of self-assembly has proven remarkably difficult. It challenges our ability to manipulate matter on small scales."
The reasons for this difficulty include structural features such as a low packing fraction-meaning that in a diamond lattice, in contrast to many other crystalline structures, particles occupy only a small part of the lattice volume-and strong sensitivity to the way bonds between particles are oriented. "Everything must fit together in just such a way without any shift or rotation of the particles' positions," Gang said. "Since the diamond structure is very open, many things can go wrong, leading to disorder."
"Even to build such structures one-by-one would be challenging," Liu added, "and we needed to do so by self-assembly because there is no way to manipulate billions of nanoparticles one-by-one."
Gang's previous success using DNA to construct a wide range of nanoparticle arrays suggested that a DNA-based approach might work in this instance.
DNA guides assembly
The team first used the ropelike DNA bundles to build tetrahedral "cages"-a 3D object with four triangular faces. They added single-stranded DNA tethers pointing toward the interior of the cages using T,G,C,A sequences that matched up with complementary tethers attached to gold nanoparticles. When mixed in solution, the complementary tethers paired up to "trap" one gold nanoparticle inside each tetrahedron cage.
The arrangement of gold nanoparticles outside the cages was guided by a different set of DNA tethers attached at the vertices of the tetrahedrons. Each set of vertices bound with complementary DNA tethers attached to a second set of gold nanoparticles.
When mixed and annealed, the tetrahedral arrays formed superlattices with long-range order where the positions of the gold nanoparticles mimics the arrangement of carbon atoms in a lattice of diamond, but at a scale about 100 times larger.
"Although this assembly scenario might seem hopelessly unconstrained, we demonstrate experimentally that our approach leads to the desired diamond lattice, drastically streamlining the assembly of such a complex structure," Gang said.
The proof is in the images. The scientists used cryogenic transmission electron microscopy (cryo-TEM) to verify the formation of tetrahedral frames by reconstructing their 3D shape from multiple images. Then they used in-situ small-angle x-ray scattering (SAXS) at the National Synchrotron Light Source (NSLS, https://www.bnl.gov/ps/), and cryo scanning transmission electron microscopy (cryo-STEM) at the CFN, to image the arrays of nanoparticles in the fully constructed lattice.
"Our approach relies on the self-organization of the triangularly shaped blunt vertices of the tetrahedra (so called 'footprints') on isotropic spherical particles. Those triangular footprints bind to spherical particles coated with complementary DNA, which allows the particles to coordinate their arrangement in space relative to one another. However, the footprints can arrange themselves in a variety of patterns on a sphere. It turns that one particular placement is more favorable, and it corresponds to the unique 3D placement of particles that locks the diamond lattice," Gang said.
The team supported their interpretation of the experimental results using theoretical modeling that provided insight about the main factors driving the successful formation of diamond lattices.
Sparkling implications
"This work brings to the nanoscale the crystallographic complexity seen in atomic systems," said Gang, who noted that the method can readily be expanded to organize particles of different material compositions. The group has demonstrated previously that DNA-assembly methods can be applied to optical, magnetic, and catalytic nanoparticles as well, and will likely yield the long-sought novel optical and mechanical materials scientists have envisioned.
"We've demonstrated a new paradigm for creating complex 3D-ordered structures via self-assembly. If you can build this challenging lattice, the thinking is you can build potentially a variety of desired lattices," he said.
###
This work was funded by the DOE Office of Science. CFN and NSLS are DOE Office of Science User Facilities.
####
About Brookhaven National Laboratory
Brookhaven National Laboratory is supported by the Office of Science of the U.S. Department of Energy. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.
One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. Brookhaven is operated and managed for DOE's Office of Science by Brookhaven Science Associates, a limited-liability company founded by the Research Foundation for the State University of New York on behalf of Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit applied science and technology organization.
For more information, please click here
Contacts:
Karen McNulty Walsh
kmcnulty@bnl.gov
631-344-8350
Peter Genzer
(631) 344-3174
genzer@bnl.gov
Copyright © Brookhaven National Laboratory
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
Magnetism/Magnons
Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024
News and information
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025
Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025
Laboratories
A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024
Govt.-Legislation/Regulation/Funding/Policy
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Possible Futures
Lattice-driven charge density wave fluctuations far above the transition temperature in Kagome superconductor April 25th, 2025
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025
Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025
Chip Technology
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025
New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025
Optical computing/Photonic computing
Nanophotonic platform boosts efficiency of nonlinear-optical quantum teleportation April 25th, 2025
Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024
Discoveries
Lattice-driven charge density wave fluctuations far above the transition temperature in Kagome superconductor April 25th, 2025
HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025
Nanophotonic platform boosts efficiency of nonlinear-optical quantum teleportation April 25th, 2025
Materials/Metamaterials/Magnetoresistance
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024
Announcements
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025
Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Nanophotonic platform boosts efficiency of nonlinear-optical quantum teleportation April 25th, 2025
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Military
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Single atoms show their true color July 5th, 2024
NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024
Photonics/Optics/Lasers
Nanophotonic platform boosts efficiency of nonlinear-optical quantum teleportation April 25th, 2025
Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024
Researchers succeed in controlling quantum states in a new energy range December 13th, 2024
Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |