MENU

Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Study reveals how herpes virus tricks the immune system

The cold sore virus, shown in pink, inserts itself into TAP, a transporter protein whose function is key to the body's immune defenses. By jamming the transporter, the virus is able to hide from the immune system.
CREDIT: Laboratory of Membrane Biology and Biophysics at The Rockefeller University/Nature
The cold sore virus, shown in pink, inserts itself into TAP, a transporter protein whose function is key to the body's immune defenses. By jamming the transporter, the virus is able to hide from the immune system.

CREDIT: Laboratory of Membrane Biology and Biophysics at The Rockefeller University/Nature

Abstract:
With over half the U.S. population infected, most people are familiar with the pesky cold sore outbreaks caused by the herpes virus. The virus outsmarts the immune system by interfering with the process that normally allows immune cells to recognize and destroy foreign invaders. How exactly the herpes simplex 1 virus pulls off its nifty scheme has long been elusive to scientists.

Study reveals how herpes virus tricks the immune system

New York, NY | Posted on February 5th, 2016

Now new research from The Rockefeller University sheds light on the phenomenon. A team of structural biologists in Jue Chen's Laboratory of Membrane Biology and Biophysics have captured atomic images of the virus in action, revealing how it inserts itself into another protein to cause a traffic jam in an important immune system pathway. The findings were published in Nature on January 20.

"This work illustrates a striking example of how a persistent virus evades the immune system," says Chen. "Once this virus enters the body, it never leaves. Our findings provide a mechanistic explanation for how it's able to escape detection by immune cells."

Bridge to endoplasmic reticulum blocked

When a virus enters the body, it gets chewed up inside cells, and little pieces end up stuck to the outside of the cell. "These pieces act like a barcode to immune cells, which sense that a pathogen is present, and attack," says senior research associate and first author of the paper, Michael Oldham.

One piece of the machinery involved in getting bits of virus to the cell's surface is a protein called TAP. It's a transporter that acts as a bridge to move the virus pieces across the membrane of the endoplasmic reticulum, a structure within the cell that packages the virus bits. From here they move to the cell's surface, alerting immune cells to the virus's presence.

"We knew that TAP was involved in our inability to have an effective immune response to this virus, but no one really knew what TAP looks like, or how it works," says Chen. "Our findings show exactly how this viral protein jams TAP, which has two effects. One, it precludes the regular protein from binding. Two, it makes the transporter stuck in this conformation."

Microscopy breakthrough

It has been notoriously difficult to investigate the structure of proteins embedded in cellular membranes, such as TAP, because the samples are not stable and disintegrate easily. In this study, the researchers used a technique known as cryo-electron microscopy, in which the purified protein is frozen in a thin layer of ice. This stabilizes the sample, allowing scientists to retrieve data and computationally determine the structure.

The usefulness of cryo-EM was previously restricted by its inability to yield detailed molecular structures, but recent breakthroughs in detector technology now allow the capture of structural information at the scale of tenths of nanometers. Through a collaboration with Thomas Walz, head of the Laboratory of Molecular Electron Microscopy at Rockefeller, and using sophisticated cryo-EM tools, Chen's team was able to investigate TAP's structure in great detail.

Virus as teacher

Therapeutics to prevent cold sores is not something that will emerge in the near future, due to the complexities involved in creating a drug specific enough to only affect certain transporters. Accidentally interfering with TAP or other similar transporters in an unintended way would likely disrupt many cellular processes and cause major side effects.

However, understanding the various ways viruses block transporters could be harnessed for treating other diseases. TAP is a member of a family of transporters that are found across human cells, a number of which pump molecules like nutrients and drugs across membranes to various cellular compartments. These transporters often pump chemotherapy drugs out of the compartments they are needed in, rendering the drugs useless. Inhibiting these transporters for a short period of time could allow the chemotherapy to stay where it's needed and function effectively.

"We haven't been able to figure out how to block these transporters ourselves," says Chen, "so we are learning how it's done from viruses, which we hope will teach us some strategies for inhibition."

####

For more information, please click here

Contacts:
Katherine Fenz
kfenz@rockefeller.edu
212-327-7913

Copyright © Rockefeller University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025

Nanomedicine

Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025

Next-generation drug delivery innovation! DGIST develops precision therapeutics using exosomes April 25th, 2025

Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Discoveries

Lattice-driven charge density wave fluctuations far above the transition temperature in Kagome superconductor April 25th, 2025

An earth-abundant mineral for sustainable spintronics: Iron-rich hematite, commonly found in rocks and soil, turns out to have magnetic properties that make it a promising material for ultrafast next-generation computing April 25th, 2025

HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025

Nanophotonic platform boosts efficiency of nonlinear-optical quantum teleportation April 25th, 2025

Announcements

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Nanophotonic platform boosts efficiency of nonlinear-optical quantum teleportation April 25th, 2025

Quantum sensors tested for next-generation particle physics experiments: New research shows that the specialized sensors can detect particles more precisely April 25th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project