MENU

Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Topological insulators: Magnetism is not causing loss of conductivity

In pure bismuth-selenide (left) no bandgap is found. With the addition of magnetic manganese (4 percent; 8 percent), a band gap (dashed line) arises, and electrical conductivity disappears. This effect shows even at room temperature.
CREDIT: HZB
In pure bismuth-selenide (left) no bandgap is found. With the addition of magnetic manganese (4 percent; 8 percent), a band gap (dashed line) arises, and electrical conductivity disappears. This effect shows even at room temperature.

CREDIT: HZB

Abstract:
Topological insulators appeared to be rather well-understood from theory until now. The electrons that can only occupy "allowed" quantum states in the crystal lattice are free to move in only two dimensions, namely along the surface, behaving like massless particles. Topological insulators are therefore highly conductive at their surfaces and electrically insulating within. Only magnetic fields should destroy this mobility, according to theory. Now physicists headed by Oliver Rader and Jaime Sánchez-Barriga from HZB along with teams from other HZB departments, groups from Austria, the Czech Republic, Russia, and theoreticians in Munich have disproved this hypothesis.

Topological insulators: Magnetism is not causing loss of conductivity

Berlin, Germany | Posted on February 22nd, 2016

They investigated samples for this purpose made of bismuth-selenide - a classic topological insulator - built up from enormous numbers of extremely thin layers, like puff pastry. These samples were doped with the magnetic element manganese (Mn), forming (Bi1_xMnx)2Se3 with various concentrations of Mn. Theoretically, what is known as a band gap should have opened between the allowed electron states as a result of doping with magnetic impurities so that the previously conductive surface becomes insulating. As a result of the appearance of the band gap, the electrons also regain part of their mass. The magnetism of the impurities should be the critical influence in this process.

Theory disproved: Magnetism is not influencing the mobility of electrons

The physicists were able to actually detect the formation of a band gap in the doped samples. The mass of the electrons climbed from zero to one-sixth the mass of free electrons. They showed, however, that this band gap is not the result of ferromagnetic ordering in the interior or at the surface of the material, nor of the local magnetic moments of the manganese. The band gap formed independent of the strength of the magnetisation and even when the sample was doped with nonmagnetic impurities.

"We even measured surface band gaps that are ten times larger than the theoretically predicted magnetic band gaps, and actually independent of whether we had incorporated magnetic or nonmagnetic impurities", says Jaime Sánchez-Barriga.

Instead, they suggest an entirely different process in these samples that causes the band gap at the Dirac point: with the help of what is known as resonant photoemission spectroscopy, they were able to observe scattering processes that might be responsible for opening a band gap. The fundamental properties of topological insulators do not offer many possibilities for these kinds of scattering processes. The researchers think it is conceivable that the presence of the impurities enables the electrons to leave the surface and disappear into the bulk.

"It is always more interesting for experimentalists like us, of course, when the experiment does not confirm the theoretical expectation. This band gap is considerably larger than predicted by theory and additionally involves a different causal mechanism. In order be sure that we are not mistaken, we used the entire arsenal at BESSY II, such as photoelectron microscopy and magnetic fields up to seven tesla. This enabled us to really preclude magnetism occurring as a possible cause down to roughly the nanometre scale", explains Oliver Rader.

Two conclusions can already be drawn from this work: on one hand, that topologically shielded states are still far from being completely understood. On the other, it means that problems previously overlooked are now in the spotlight. How can scattering processes be minimised by the choice of magnetic impurities? And what is the role of lattice location of the impurities in the host? Since Topological insulators are promising candidates for new information technologies, those questions should be explored in depth.

####

For more information, please click here

Contacts:
Antonia Roetger
antonia.roetger@helmholtz-berlin.de
49-308-062-43733

Copyright © Helmholtz-Zentrum Berlin für Materialien und Energie

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

Magnetism/Magnons

An earth-abundant mineral for sustainable spintronics: Iron-rich hematite, commonly found in rocks and soil, turns out to have magnetic properties that make it a promising material for ultrafast next-generation computing April 25th, 2025

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025

News and information

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025

Possible Futures

Lattice-driven charge density wave fluctuations far above the transition temperature in Kagome superconductor April 25th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025

Chip Technology

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

Discoveries

Lattice-driven charge density wave fluctuations far above the transition temperature in Kagome superconductor April 25th, 2025

An earth-abundant mineral for sustainable spintronics: Iron-rich hematite, commonly found in rocks and soil, turns out to have magnetic properties that make it a promising material for ultrafast next-generation computing April 25th, 2025

HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025

Nanophotonic platform boosts efficiency of nonlinear-optical quantum teleportation April 25th, 2025

Materials/Metamaterials/Magnetoresistance

An earth-abundant mineral for sustainable spintronics: Iron-rich hematite, commonly found in rocks and soil, turns out to have magnetic properties that make it a promising material for ultrafast next-generation computing April 25th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024

Announcements

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Nanophotonic platform boosts efficiency of nonlinear-optical quantum teleportation April 25th, 2025

Quantum sensors tested for next-generation particle physics experiments: New research shows that the specialized sensors can detect particles more precisely April 25th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project