Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > International research team achieves controlled movement of skyrmions: Basis for the utilization of skyrmions for application-related systems/ Magnetic vortices as data storage media of the future

The magnetic structure of a skyrmion is symmetrical around its core; arrows indicate the direction of spin.
CREDIT: ill./©: Benjamin Krüger, JGU
The magnetic structure of a skyrmion is symmetrical around its core; arrows indicate the direction of spin.

CREDIT: ill./©: Benjamin Krüger, JGU

Abstract:
A joint research project being undertaken by Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) has achieved a breakthrough in fundamental research in the field of potential future data storage technologies. The idea is that electronic storage units (bits) will not be stored on rotating hard disks as is currently standard practice but on a nanowire in the form of magnetic vortex structures, so-called skyrmions, using a process similar to that of a shift register. The magnetic skyrmion bits would be rapidly accessible, while storage density would be high and there would be improved energy efficiency. The project team managed, for the first time, to achieve targeted shifting of individual skyrmions at room temperature using electrical impulses. Their results have been published in the journal Nature Materials.

International research team achieves controlled movement of skyrmions: Basis for the utilization of skyrmions for application-related systems/ Magnetic vortices as data storage media of the future

Mainz, Germany | Posted on March 10th, 2016

Magnetic skyrmions are special spin configurations that can occur in materials and particularly in thin layer structures when the inversion symmetry is broken. With regard to the systems that are of interest here, this means that a thin metal film with a non-symmetrical layer structure can be employed. In materials such as this, spin configurations that behave rather like a hair whorl can form. It can be just as difficult to eradicate a skyrmion as it can be to smooth out a hair whorl, a property that gives skyrmions enhanced stability.

An important characteristic of skyrmions is that they can exist in isolation in magnetic materials and generally do not tend to collide with the edge of a structure. This provides them with the unique ability to skirt any isolated defects or unevenness in the material with which other magnetic structures, such as domain walls, would collide. Skyrmions are therefore excellent candidates for use with magnetic shift registers, otherwise known as racetrack memory. Information could be encoded in the form of skyrmions and an electrical current could be employed to move them past fixed read/write heads. The process would be both rapid and completely independent of movable mechanical components and thus ideally suited for mobile applications.

During the project, it was demonstrated that individual skyrmions can indeed be moved in a controlled manner along a magnetic wire, i.e., the so-called racetrack, by exposing them to brief electrical impulses at room temperature. In addition, new methods to describe their dynamics were developed and confirmed by experimentation. This work can thus be regarded as laying down the cornerstone for the future use of skyrmions in application-related systems.

"It is always great to see when a joint project quickly leads to exciting results. This is particularly true in this case, as we have been able to produce this journal article within just a year of entering into our cooperation agreement. It would never have come about had it not been for the close collaboration between Mainz University and MIT and the lively exchange of ideas," said Kai Litzius, co-author of the article. Litzius is on a stipendiary scholarship awarded by the Graduate School of Excellence "Materials Science in Mainz" (MAINZ) and is a member of the team headed by Professor Mathias Kläui.

"I'm delighted by the way we were able to work efficiently and continuously with groups at MIT. After receiving start-up funding through a joint project financed by the German Federal Ministry of Education and Research, we have been able to produce six joint publications since 2014, partly as the result of several student visits to MIT," emphasized Kläui, a professor at the Institute of Physics and the director of the MAINZ Graduate School of Excellence.

###

Establishment of the MAINZ Graduate School was approved through the Excellence Initiative by the German Federal and State Governments to Promote Science and Research at German Universities in 2007 and its funding was extended in the second round in 2012. It consists of work groups from Johannes Gutenberg University Mainz, TU Kaiserslautern, and the Max Planck Institute for Polymer Research in Mainz. One of its focal research areas is spintronics, where cooperation with leading international partners plays an important role.

####

For more information, please click here

Contacts:
Dr. Mathias Kläui

49-613-139-23633

Copyright © Johannes Gutenberg University Mainz (JGU)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Magnetism/Magnons

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Three-pronged approach discerns qualities of quantum spin liquids November 17th, 2023

Study on Magnetic Force Microscopy wins 2023 Advances in Magnetism Award: Analysis of finite size effects reveals significant consequences for density measurements November 3rd, 2023

Twisted science: NIST researchers find a new quantum ruler to explore exotic matter October 6th, 2023

Spintronics

Researchers discover a potential application of unwanted electronic noise in semiconductors: Random telegraph noises in vanadium-doped tungsten diselenide can be tuned with voltage polarity August 11th, 2023

Quantum materials: Electron spin measured for the first time June 9th, 2023

Rensselaer researcher uses artificial intelligence to discover new materials for advanced computing Trevor Rhone uses AI to identify two-dimensional van der Waals magnets May 12th, 2023

Spin photonics to move forward with new anapole probe November 4th, 2022

Chip Technology

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Memory Technology

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Researchers discover materials exhibiting huge magnetoresistance June 9th, 2023

Rensselaer researcher uses artificial intelligence to discover new materials for advanced computing Trevor Rhone uses AI to identify two-dimensional van der Waals magnets May 12th, 2023

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Research partnerships

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project