MENU

Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > The updated crystalline sponge method

Binding modes found in the pore of a crystalline sponge are shown.
CREDIT: Hoshino et al.
Binding modes found in the pore of a crystalline sponge are shown.

CREDIT: Hoshino et al.

Abstract:
X-ray crystallographic analysis is one of the only methods that provides direct information on molecular structures at the atomic level. The method, however, has the intrinsic limitation that the target molecules must be crystalline, and high-quality single crystals must be prepared before measurement. These limitations have often caused considerable problems for scientists in their determination of molecular structures. In 2013, a group of scientists reported a revolutionary new technique for single-crystal X-ray diffraction analysis that did not require the crystallisation of samples in the sample preparation [Inokuma et al. (2013), Nature, 495, 461-466]. This method, later coined the crystalline sponge method, uses crystals of porous metal complexes capable of absorbing guest compounds from solution in a common solvent. The guests are efficiently trapped and concentrated at several binding sites in the porous complexes, and the periodic array of the binding sites renders the absorbed guests oriented and observable by common X-ray diffraction studies.

The updated crystalline sponge method

Chester, UK | Posted on March 12th, 2016

However, the subsequent data quality of the trapped guest compound was not very high and the use of restraints and constraints based on chemical information was necessary to refine the guest structures. The need for this workaround was due purely to unoptimised experimental conditions and protocols. It soon became clear that to develop the crystalline sponge method from basic science into a reliable new technology that might innovate and support the molecular chemistry community, considerable effort was needed to improve the data quality. In addition, the crystallographic scope and limitations in the refinement of structures with large pores -- more commonly known as metal-organic framework (MOF) structures -- needed to be considered carefully. Over the last two years, therefore, the same group of researchers has made considerable advances in improving the data quality and uncovering the crystallographic scope and limitations for the refinement of guest structures obtained using the crystalline sponge method [Hoshino et al. (2016), IUCrJ, 3, 139-151; doi:10.1107/S2052252515024379].

These researchers anticipate renewed interest in the technique and hope further experimentation by the community will improve the quality and value of the protocol.

####

For more information, please click here

Contacts:
Dr. Jonathan Agbenyega
ja@iucr.org
124-434-2878

Copyright © International Union of Crystallography

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

http://dx.doi.org/10.1107/S2052252515024379:

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Crystallography

First measurement of electron energy distributions, could enable sustainable energy technologies June 5th, 2020

How to trick electrons to see the hidden face of crystals: Researchers try a trick for complete 3D analysis of submicron crystals August 3rd, 2019

3-D-printed jars in ball-milling experiments June 29th, 2017

Novel nozzle saves crystals: Double flow concept widens spectrum for protein crystallography March 17th, 2017

Discoveries

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Materials/Metamaterials/Magnetoresistance

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024

FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Leading the charge to better batteries February 28th, 2025

Quantum interference in molecule-surface collisions February 28th, 2025

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project