Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Microagents with revolutionary potential

The Janus particles move by means of rotating magnetic fields (l.). If the magnetic field is altered, the microrobots generate an electric field (r.). A chemical compound (bluish green bullet) is released which than destroys defective cells.
CREDIT: ETH Zurich / Salvador Pané
The Janus particles move by means of rotating magnetic fields (l.). If the magnetic field is altered, the microrobots generate an electric field (r.). A chemical compound (bluish green bullet) is released which than destroys defective cells.

CREDIT: ETH Zurich / Salvador Pané

Abstract:
Salvador Pané was on a trolleybus in Zurich one day after work. He was deep in thought when the bus came to a sudden stop because the cable was disrupted. He was struck by an idea: "Why can't we create a microrobot that generates an electric field wirelessly?" The idea stayed with him and, as a result, the ETH researcher and his colleagues have since succeeded in creating tiny particles that can be precisely controlled by magnetic fields and also generate electric fields.

Microagents with revolutionary potential

Zurich, Switzerland | Posted on March 24th, 2016

This may sound relatively unspectacular to the uninitiated, but it is a breakthrough. What makes it unique is that a microstructure with a single source of energy is not only moved, but also can be brought to exercise another functionality. Until now, this had been possible only independently of each other. Pané and his team from the Institute of Robotics and Intelligent Systems have published their research results in the scientific journal Materials Horizons. Their findings could one day revolutionise medicine.

Like the layers of a lasagne

Pané, a chemist, has spent the past few years dealing with magnetoelectric micro and nanorobots, which can be stimulated by electromagnetic fields. Some of these materials are composed of different layers, with each exhibiting a different reaction to the magnetic field. "You have to imagine it like a lasagne with two layers: one layer responds to the field by changing its volume. These materials are magnetostrictive," explains Pané. "Due to the stress transferred, the second piezoelectric layer becomes electrically polarized.

The scientists have made good use of this effect: they coated the microparticles on one side with two different metal layers, one of cobalt ferrite (magnetostrictive) and the other of barium titanate (piezoelectric) - two layers of the lasagne. When a magnetic field is generated around the particles, the inner layer of cobalt ferrite expands and the outer layer of barium titanate deforms, generating an electric field around the microparticles. The magnetoelectric effect was demonstrated by inducing electrochemical reactions.

Bringing drugs to their targets

The microrobots are named after Janus, the two-headed Roman god, because they are also composed of two halves. The Janus particles move by means of rotating magnetic fields. If the magnetic field is then altered, the microrobots generate an electric field. This opens up a wide range of applications, particularly in the field of medicine. "We could equip the microrobots with drugs, for example, and target them directly at cancerous tumours in the body, where they would then unload their cargo via the stimulus of the generated electric field," explains Pané. "This would virtually eliminate the side-effects of cancer drugs because only the cancer cells would be attacked. In addition, the precise application would significantly increase the efficacy of cancer therapies." However, other applications, such as the wireless electrical stimulation of cells, could expand regenerative medicine in a revolutionary way.

Much research before application

Many questions still have to be answered before the microrobots can actually be used as a vehicle to transport drugs. For example, it is not yet clear which is the most efficient structure of material combination with the highest magnetoelectric properties. In addition, the microrobots have to be tested for their compatibility with the human body. "A lot of experiments still need to be done," says Pané. He cites corrosion as an example: "This is often overlooked at the micro and nanoscale, but it needs to be thoroughly investigated." Corrosion is capable of affecting not only the function of a device but can also cause contamination.

"We have to look very carefully if we want to use a technology for a medical application," emphasises the researcher. For this reason, in the development of micro and nanorobots his team is not limiting itself to technical feasibility alone, but is also exploring the compatibility, toxicity and efficiency of the robots. Pané is convinced that the microrobots will one day have the potential to make an important contribution in the field of biomedicine. It would be the (provisional) end of a journey that began on a Zurich trolleybus.

####

For more information, please click here

Contacts:
Dr. Salvador Pané

41-446-323-312

Copyright © ETH Zurich

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Reference

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Robotics

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Cancer

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Nanomedicine

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Safety-Nanoparticles/Risk management

First human trial shows ‘wonder’ material can be developed safely: A revolutionary nanomaterial with huge potential to tackle multiple global challenges could be developed further without acute risk to human health, research suggests February 16th, 2024

New research may make future design of nanotechnology safer with fewer side effects: Study shows a promising strategy to reduce adverse reactions to nanoparticles by using complement inhibitors October 6th, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Billions of nanoplastics released when microwaving baby food containers: Exposure to plastic particles kills up to 75% of cultured kidney cells July 21st, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project