Home > Press > Crumpling approach enhances photodetectors' light responsivity
![]() |
Stretchable photodetector with enhanced, strain-tunable photoresponsivity was created by engineering the 2D graphene material into 3D structures, increasing the graphene’s areal density. Credit: University of Illinois College of Engineering |
Abstract:
Researchers from the University of Illinois at Urbana-Champaign have demonstrated a new approach to modifying the light absorption and stretchability of atomically thin two-dimensional (2D) materials by surface topographic engineering using only mechanical strain. The highly flexible system has future potential for wearable technology and integrated biomedical optical sensing technology when combined with flexible light-emitting diodes.
"Increasing graphene's low light absorption in visible range is an important prerequisite for its broad potential applications in photonics and sensing," explained SungWoo Nam, an assistant professor of mechanical science and engineering at Illinois. "This is the very first stretchable photodetector based exclusively on graphene with strain-tunable photoresponsivity and wavelength selectivity."
Graphene--an atomically thin layer of hexagonally bonded carbon atoms--has been extensively investigated in advanced photodetectors for its broadband absorption, high carrier mobility, and mechanical flexibility. Due to graphene's low optical absorptivity, graphene photodetector research so far has focused on hybrid systems to increase photoabsorption. However, such hybrid systems require a complicated integration process, and lead to reduced carrier mobility due to the heterogeneous interfaces.
According to Nam, the key element enabling increased absorption and stretchability requires engineering the two-dimensional material into three-dimensional (3D) "crumpled structures," increasing the graphene's areal density. The continuously undulating 3D surface induces an areal density increase to yield higher optical absorption per unit area, thereby improving photoresponsivity. Crumple density, height, and pitch are modulated by applied strain and the crumpling is fully reversible during cyclical stretching and release, introducing a new capability of strain-tunable photoabsorption enhancement and allowing for a highly responsive photodetector based on a single graphene layer.
"We achieved more than an order-of-magnitude enhancement of the optical extinction via the buckled 3D structure, which led to an approximately 400% enhancement in photoresponsivity," stated Pilgyu Kang, and first author of the paper, "Crumpled Graphene Photodetector with Enhanced, Strain-tunable and Wavelength-selective Photoresponsivity," appearing in the journal, Advanced Materials. "The new strain-tunable photoresponsivity resulted in a 100% modulation in photoresponsivity with a 200% applied strain. By integrating colloidal photonic crystal--a strain-tunable optomechanical filter--with the stretchable graphene photodetector, we also demonstrated a unique strain-tunable wavelength selectivity."
"This work demonstrates a robust approach for stretchable and flexible graphene photodetector devices," Nam added. "We are the first to report a stretchable photodetector with stretching capability to 200% of its original length and no limit on detection wavelength. Furthermore, our approach to enhancing photoabsorption by crumpled structures can be applied not only to graphene, but also to other emerging 2D materials."
###
In addition to Nam and Kang, study co-authors include Michael Cai Wang and Peter M. Knapp in the Department of Mechanical Science and Engineering at Illinois. The optical characterizations and partial device fabrication were carried out in the Frederick Seitz Materials Research Laboratory and the Micro and Nano Technology Laboratory at Illinois.
####
For more information, please click here
Contacts:
SungWoo Nam
swnam@illinois.edu
217-300-0267
Copyright © University of Illinois College of Engineering
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025
2 Dimensional Materials
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Graphene/ Graphite
Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024
Possible Futures
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Sensors
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Discoveries
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Announcements
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Leading the charge to better batteries February 28th, 2025
Quantum interference in molecule-surface collisions February 28th, 2025
New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025
Photonics/Optics/Lasers
Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024
Researchers succeed in controlling quantum states in a new energy range December 13th, 2024
Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |