Home > Press > Nanoparticles show promise for treating intestinal inflammation, study finds
This is Didier Merlin, professor in the Institute for Biomedical Sciences at Georgia State University and researcher at the Atlanta Veterans Affairs Medical Center. CREDIT: Georgia State University |
Abstract:
Nanoparticles designed to block a cell-surface molecule that plays a key role in inflammation could be a safe treatment for inflammatory bowel disease (IBD), according to researchers in the Institute for Biomedical Sciences at Georgia State University and Southwest University in China.
The scientists developed nanoparticles, or microscopic particles, to reduce the expression of CD98, a glycoprotein that promotes inflammation. Their findings are published in the journal Colloids and Surfaces B: Biointerfaces.
"Our results suggest this nanoparticle could potentially be used as an efficient therapeutic treatment for inflammation," said Didier Merlin, professor in the Institute for Biomedical Sciences at Georgia State and researcher at the Atlanta Veterans Affairs Medical Center. "We targeted CD98 because we determined in a previous study that CD98 is highly over-expressed in activated immune cells involved in IBD."
In the United States, as many as 1.3 million people suffer from IBD, which includes ulcerative colitis and Crohn's disease, conditions with chronic or recurring abnormal response to the body's immune system and inflammation of the gastrointestinal tract. IBD gets worse over time and causes severe gastrointestinal symptoms, such as persistent diarrhea, cramping abdominal pain, fever, rectal bleeding, loss of appetite and weight loss. Surgery is required when medication can no longer control the symptoms, and patients also have an increased risk of colon cancer, according to the Centers for Disease Control and Prevention.
This study suggests the development of nanotherapeutic strategies could be an alternative to currently available drugs, which are limited by serious side effects, in treating inflammatory conditions such as IBD.
In the study, researchers formed the nanoparticles by combining CD98 siRNA, small interfering RNA that inhibit CD98 gene expression in macrophages (immune cells involved in IBD), with urocanic acid-modified chitosan (UAC). Chitosan is a polysaccharide obtained from the hard outer skeleton of shellfish. When introduced to macrophages, the nanoparticles had an anti-inflammatory effect on these immune cells.
Researchers found the nanoparticles had a desirable particle size and no apparent toxicity against macrophages and colon epithelial cells. Cell studies showed nanoparticles with a weight ratio of 60:1 (UAC:siCD98) had the best anti-inflammatory capacity.
###
Co-authors of the study include Emilie Viennois from the Institute for Biomedical Sciences at Georgia State and Atlanta Veterans Affairs Medical Center; Panpan Ma of Southwest University in Chongqing, China; and Bo Xiao from the Institute for Biomedical Sciences at Georgia State and Southwest University in Chongqing, China.
The study was funded by the Department of Veterans Affairs, the National Institutes of Health's National Institute of Diabetes and Digestive and Kidney Diseases, and the National Natural Science Foundation of China.
####
For more information, please click here
Copyright © Georgia State University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Govt.-Legislation/Regulation/Funding/Policy
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Single atoms show their true color July 5th, 2024
Possible Futures
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Nanomedicine
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Military
Single atoms show their true color July 5th, 2024
NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024
What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024
Nanobiotechnology
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024
Research partnerships
Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024
Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024
Researchers’ approach may protect quantum computers from attacks March 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||