Home > Press > Topology explains queer electrical current boost in non-magnetic metal: Scientists reduce resistance in PdCoO2 with magnetic fields
Applying a magnetic field to PdCoO2, a non-magnetic metal, made it conduct 70% more electricity, even though basic physics principles would have predicted the opposite. CREDIT: Eiri Ono/Kyoto University |
Abstract:
Insights from pure mathematics are lending new insights to material physics, which could aid in development of new devices and sensors. Now an international team of physicists has discovered that applying a magnetic field to a non-magnetic metal made it conduct 70% more electricity, even though basic physics principles would have predicted the opposite.
"We never expected that magnetoresistance could be lowered even further in the compound we tested, because in theory it should have increased," says Kyoto University study author Shingo Yonezawa.
Applying a magnetic field to metals affects how well they are able to conduct electricity. Resistance arising from the magnetic field -- magnetoresistance -- is used in contexts like writing data in hard discs. Because of its wide application potential, material physicists are constantly striving to find new materials that show large-scale magnetoresistance.
Exposing a non-magnetic metal to a magnetic field typically increases its resistance and reduces the amount of electric current that is able to pass through it. Researchers at Kyoto University and the National Institute for Materials Science, in collaboration with researchers at National High-Magnetic Field Laboratory in the US, observed otherwise, however; when they applied a magnetic field to the compound PdCoO2, its resistance actually decreased, consequently increasing electrical current.
"Oxides tend not to deliver currents so readily, but PdCoO2 is one the oxides that actually conduct electricity beautifully," says Yonezawa. "It already has low resistance relative to other oxides."
The phenomenon remained unexplained until colleagues from the United States made a link with an analogy from topology, a mathematics discipline concerning continuous deformations.
"Electrons in some classes of materials have topological characteristics that lead them to be 'boosted' by magnetic fields, ultimately decreasing resistance," continues Yonezawa. Although PdCoO2 was believed to lack such topological characteristics, it turns out that in the magnetic field this material can exhibit a phenomenon similar to these, aided by its very 'clean', layered crystal structure."
Resistance also decreased in compounds PtCoO2 and Sr2RuO4, which have similar layered structures to PdCoO2.
"From these observations we now know that the phenomenon generally applies to other oxides with a layered structure," explains Yoshiteru Maeno, a senior author also at Kyoto University. "Further developments in stratified non-magnetic metals with good conductivity should bring about new devices and sensors that have large magnetoresistance even when exposed to weak magnetic fields."
####
About Kyoto University
Kyoto University is one of Japan and Asia's premier research institutions, founded in 1897 and responsible for producing numerous Nobel laureates and winners of other prestigious international prizes. A broad curriculum across the arts and sciences at both undergraduate and graduate levels is complemented by numerous research centers, as well as facilities and offices around Japan and the world. For more information please see: www.kyoto-u.ac.jp/en
For more information, please click here
Contacts:
Anna Ikarashi
075-753-5728
Copyright © Kyoto University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Magnetism/Magnons
Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024
Three-pronged approach discerns qualities of quantum spin liquids November 17th, 2023
Study on Magnetic Force Microscopy wins 2023 Advances in Magnetism Award: Analysis of finite size effects reveals significant consequences for density measurements November 3rd, 2023
Twisted science: NIST researchers find a new quantum ruler to explore exotic matter October 6th, 2023
Possible Futures
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Memory Technology
Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024
Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023
Researchers discover materials exhibiting huge magnetoresistance June 9th, 2023
Sensors
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Materials/Metamaterials/Magnetoresistance
Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024
Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||