Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > NTU scientists invent bubble technology which can shoot drugs deep into tumors: Using ultrasound, drug particles can be directed to a specific area

Asst. Prof. Xu Chenjie (left) and Assoc. Prof. Claus-Dieter Ohl (right) are looking at the magnetic bubbles on a petridish.
CREDIT: NTU Singapore
Asst. Prof. Xu Chenjie (left) and Assoc. Prof. Claus-Dieter Ohl (right) are looking at the magnetic bubbles on a petridish.

CREDIT: NTU Singapore

Abstract:
Scientists at Nanyang Technological University (NTU Singapore) have invented a new way to deliver cancer drugs deep into tumour cells.

NTU scientists invent bubble technology which can shoot drugs deep into tumors: Using ultrasound, drug particles can be directed to a specific area

Singapore | Posted on April 18th, 2016

The NTU scientists create micro-sized gas bubbles coated with cancer drug particles and iron oxide nanoparticles, and then use magnets to direct these bubbles to gather around a specific tumour.

Ultrasound is then used to vibrate the microbubbles, providing the energy to direct the drug particles into a targeted area.

This innovative technique was developed by a multidisciplinary team of scientists, led by Asst Prof Xu Chenjie from the School of Chemical and Biomedical Engineering and Assoc Prof Claus-Dieter Ohl from the School of Physical and Mathematical Sciences.

NTU's microbubbles were successfully tested in mice and the study has been published by the Nature Publishing Group in Asia Materials, the top journal for materials sciences in the Asia-Pacific region.

Overcoming limitations of chemotherapy

Asst Prof Xu, who is also a researcher at the NTU-Northwestern Institute for Nanomedicine, said their new method may solve some of the most pressing problems faced in chemotherapy used to treat cancer.

The main issue is that current chemotherapy drugs are largely non-targeted. The drug particles flow in the bloodstream, damaging both healthy and cancerous cells. Typically, these drugs are flushed away quickly in organs such as the lungs and liver, limiting their effectiveness.

The remaining drugs are also unable to penetrate deep into the core of the tumour, leaving some cancer cells alive, which could lead to a resurgence in tumour growth.

"The first unique characteristic of our microbubbles is that they are magnetic. After injecting them into the bloodstream, we are able to gather them around the tumour using magnets and ensure that they don't kill the healthy cells," explains Asst Prof Xu, who has been working on cancer diagnosis and drug delivery systems since 2004.

"More importantly, our invention is the first of its kind that allows drug particles to be directed deep into a tumour in a few milliseconds. They can penetrate a depth of 50 cell layers or more - which is about 200 micrometres, twice the width of a human hair. This helps to ensure that the drugs can reach the cancer cells on the surface and also inside the core of the tumour."

Clinical Associate Professor Chia Sing Joo, a Senior Consultant at the Tan Tock Seng Hospital's Endoscopy Centre and the Urology & Continence Clinic, was one of the consultants for this study.

A trained robotic surgeon experienced in the treatment of prostate, bladder and kidney cancer, Assoc Prof Chia said, "For anticancer drugs to achieve their best effectiveness, they need to penetrate into the tumour efficiently in order to reach the cystoplasm of all the cancer cells that are being targeted without affecting the normal cells.

"Currently, these can be achieved by means of a direct injection into the tumour or by administering a large dosage of anticancer drugs, which can be painful, expensive, impractical and might have various side effects."

The specialist in Uro-oncology added that if NTU's technology proves to be viable, clinicians might be able to localise and concentrate the anticancer drugs around a tumour, and introduce the drugs deep into tumour tissues in just a few seconds using a clinical ultrasound system.

"If successful, I envisage it can be a good alternative treatment in the future, one which is low cost and yet effective for the treatment of cancers involving solid tumours, as it might minimise the side effects of drugs."

New drug delivery system

The motivation for this research project is to find alternative solutions for drug delivery systems that are non-invasive and safe.

Ultrasound uses soundwaves with frequencies higher than those heard by the human ear. It is commonly used for medical imaging such as to get diagnostic images.

Magnets, which can draw and attract the microbubbles, are already in use in diagnostic machines such the Magnetic Resonance Imaging (MRI).

"We are looking at developing novel drug carriers - essentially better ways of delivering drugs with minimum side effects," explained Prof Ohl, an expert in biophysics who had published previous studies involving drug delivery systems and bubble dynamics.

"Most prototype drug delivery systems on the market face three main challenges before they can be commercially successful: they have to be non-invasive, patient-friendly and yet cost-effective.

"Using the theory of microbubbles and how their surface vibrates under ultrasound, we were able to come up with our solution that addresses these three challenges."

Interdisciplinary team

This study, which took two and a half years, involved a 12-man international interdisciplinary team consisting of NTU scientists as well as scientists from City University of Hong Kong and Tel Aviv University in Israel. Two NTU undergraduates doing their Final Year Project and one student in Summer Research Internship Programme (NTU) were also part of the team.

Moving forward, the team will be adopting this new drug delivery system in studies on lung and liver cancer using animal models, and eventually clinical studies.

They estimate that it will take another eight to ten years before it reaches human clinical trials.

####

About Nanyang Technological University
A research-intensive public university, Nanyang Technological University, Singapore (NTU Singapore) has 33,500 undergraduate and postgraduate students in the colleges of Engineering, Business, Science, Humanities, Arts, & Social Sciences, and its Interdisciplinary Graduate School. It has a new medical school, the Lee Kong Chian School of Medicine, set up jointly with Imperial College London.

NTU is also home to world-class autonomous institutes - the National Institute of Education, S Rajaratnam School of International Studies, Earth Observatory of Singapore, and Singapore Centre for Environmental Life Sciences Engineering - and various leading research centres such as the Nanyang Environment & Water Research Institute (NEWRI), Energy Research Institute @ NTU and the Institute on Asian Consumer Insight (ACI).

Ranked 13th in the world, NTU has also been ranked the world's top young university for the last two years running. The University's main campus has been named one of the Top 15 Most Beautiful in the World. NTU also has a campus in Novena, Singapore's medical district.

For more information, please click here

Contacts:
Lester Kok

65-679-06804

Copyright © Nanyang Technological University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Cancer

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Nanomedicine

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Nanobiotechnology

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024

Research partnerships

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project