Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Magnetic vortices defy temperature fluctuations: Common magnetic mineral is reliable witness to Earth's history

This micromagnetic model shows the three-dimensional vortex structure of magnetite nanocrystals.
CREDIT: University of Edinburgh
This micromagnetic model shows the three-dimensional vortex structure of magnetite nanocrystals.

CREDIT: University of Edinburgh

Abstract:
Magnetic nanovortices in magnetite minerals are reliable witnesses of the earth's history, as revealed by the first high-resolution studies of these structures undertaken by scientists from Germany and the United Kingdom. The magnetic structures are built during the cooling of molten rock and reflect the earth's magnetic field at the time of their formation. The vortices are unexpectedly resilient to temperature fluctuations, as electron holographic experiments in Jülich have verified. These results are an important step in improving our understanding of the history of the earth's magnetic field, its core and plate tectonics. (Science Advances, DOI: 10.1126/sciadv.1501801)

Magnetic vortices defy temperature fluctuations: Common magnetic mineral is reliable witness to Earth's history

Juelich, Germany | Posted on April 19th, 2016

The earth's magnetic field performs important functions: it protects us, for example, from charged particles from space and enables migratory birds, bees, and other animals to navigate. However, it is not stable, and constantly changes its intensity and state. Several times in the past it has even reversed its polarity - the north and south poles have changed places. Scientists in the area of paleomagnetism use magnetic minerals to investigate the history of the earth's magnetic field and its formation from molten metal flowing within the earth's core, the so-called geodynamo. Furthermore, the movement of continental plates can be monitored with the aid of such rocks.

In the course of millions of years, these minerals could often have been exposed to immense temperature fluctuations, due to extreme climate change or volcanic activity, for instance. How well do the magnetic structures survive such temperature fluctuations and how reliable is the information gained from them? An international research team has now studied this question for the first time at ultra-high resolution on samples of magnetite, the mineral dominating the magnetic properties in the earth's crust. "It is only in a small part of naturally occurring magnetite that magnetic structures known for being very stable with respect to temperature fluctuations are found," explains Dr. Trevor Almeida of Imperial College London. "Far more common are tiny magnetic vortices. Their stability could not be demonstrated until now."

Together with colleagues from Forschungszentrum Jülich, the University of Edinburgh and the University of Nottingham, Almeida has studied the magnetic vortices in magnetite nanocrystals. As the structures are so tiny - each grain is only about the size of a virus - there is only one method with which the nanovortices can directly be observed while they are heated up and cooled down: "A special high-resolution electron microscope at the Ernst Ruska-Centre (ER-C) in Jülich is capable of making magnetic fields on the nanoscale holographically visible," explains Almeida. "In this way, images of field lines are produced almost like using iron filings around a bar magnet to make its magnetic field visible, but with a resolution in the nanometre range."

The experiments in Jülich showed that although the magnetic vortices alter in strength and direction when heated up, they go back to their original state as they cool down. "Therefore magnetite rocks, which carry signs of temperature fluctuations, are indeed a reliable source of information about the history of the earth," enthuses Almeida.

"Electron holography has made it possible for us to gain a completely new insight into the magnetic behaviour of magnetite," emphasized Prof. Rafal Dunin-Borkowski, Director at the ER-C and at the Peter Grünberg Institute in Jülich. As an expert in electron holography, he works with his Jülich team on further improving the resolution of this technique and in providing German and international scientists the necessary infrastructure to perform this type of study. "Weak magnetic fields in nanocrystals don't just play a role in paleomagnetism. In information technology, for instance, electron holograms can also be of use to help to push back the physical limits of data storage and processing."

####

For more information, please click here

Contacts:
Angela Wenzik

49-246-161-6048

Prof. Dr. Rafal Dunin-Borkowski
Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons
Peter Grünberg Institute
"Microstructure Research" (PGI-5)
Forschungszentrum Jülich
Tel. +49 2461 61-9297


Dr. Trevor Almeida
Natural Magnetism Group
Imperial College London & School of Physics and Astronomy
University of Glasgow
Tel. +44 141 330 2879

Copyright © Forschungszentrum Juelich

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Original publication:

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Magnetism/Magnons

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Three-pronged approach discerns qualities of quantum spin liquids November 17th, 2023

Study on Magnetic Force Microscopy wins 2023 Advances in Magnetism Award: Analysis of finite size effects reveals significant consequences for density measurements November 3rd, 2023

Twisted science: NIST researchers find a new quantum ruler to explore exotic matter October 6th, 2023

Memory Technology

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Researchers discover materials exhibiting huge magnetoresistance June 9th, 2023

Rensselaer researcher uses artificial intelligence to discover new materials for advanced computing Trevor Rhone uses AI to identify two-dimensional van der Waals magnets May 12th, 2023

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Research partnerships

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project