Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > A View Through Wood Shows Futuristic Applications: Transparent wood made at UMD could create new windows, cars and solar panels

Abstract:
Researchers at the University of Maryland have made a block of linden wood transparent, which they say will be useful in fancy building materials and in light-based electronics systems.

A View Through Wood Shows Futuristic Applications: Transparent wood made at UMD could create new windows, cars and solar panels

College Park, MD | Posted on May 5th, 2016

Materials scientist Liangbing Hu and his team at the University of Maryland, College Park, have removed the molecule in wood, lignin, that makes it rigid and dark in color. They left behind the colorless cellulose cell structures, filled them with epoxy, and came up with a version of the wood that is mostly see-thru. They published their results today in the journal Advanced Materials.

“It can be used in automobiles when the wood is made both transparent and high strength.” said Dr. Mingwei Zhu, the co-first author of the paper, a visiting professor at the University of Maryland. “You could also use it as a unique building material.”

Remember “xylem” and “phloem” from grade-school science class? These structures pass water and nutrients up and down the tree. Hu and his colleagues see these as vertically aligned channels in the wood, a naturally-grown structure that can be used to pass light along, after the wood has been treated.

The resulting wood had both high transparency – the quality of being see-thru—and high haze – the quality of scattering light. This would be useful, said Hu, in making devices comfortable to look at. It would also help solar cells trap light – light could easily enter through the transparent function, but the high haze would keep the light bouncing around near where it would be absorbed by the solar panel.

They compared how the materials performed and how light worked its way through the wood when they sliced it two ways – one with the grain of the wood, so that the channels passed through the longest dimension of the block. And they also tried slicing it against the grain, so that the channels passed through the shortest dimension of the block.

The short channel wood proved slightly stronger and a little less brittle. But though the natural component making the wood strong had been removed, the addition of the epoxy made the wood four to six times tougher than the untreated version.

Then they investigated how the different directions of the wood affected the way the light passed through it. When laid down on top of a grid, both kinds of wood showed the lines clearly. When lifted just a touch above the grid, the long-channel wood still showed the grid, just a little bit more blurry. But the short channel wood, when lifted those same few millimeters, made the grid completely invisible.

Right now the blocks of wood the team is testing are about 4 inches wide, but Hu says the process “completely scalable” to larger pieces that could make up bigger building blocks.

The group is investigating whether it would be feasible to manufacture the transparent wood, which can be potentially used as a building material in about five years.

####

For more information, please click here

Contacts:
Martha J. Heil
Science Communicator, Maryland NanoCenter
Contributing Editor, National Center for Science Education


301-405-0876 (office)
626-354-5613 (cell)
office: 1118 Kim Engineering Building
mail: Mailroom, A.V. Williams Building, 8223 Paint Branch Dr.
University of Maryland
College Park, MD 20742

Copyright © University of Maryland

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Highly Anisotropic, Highly Transparent Wood Composites

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Materials/Metamaterials/Magnetoresistance

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Automotive/Transportation

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

New designs for solid-state electrolytes may soon revolutionize the battery industry: Scientists achieve monumental improvements in lithium-metal-chloride solid-state electrolytes November 3rd, 2023

Previously unknown pathway to batteries with high energy, low cost and long life: Newly discovered reaction mechanism overcomes rapid performance decline in lithium-sulfur batteries September 8th, 2023

Home

Nanomaterials enable dual-mode heating and cooling device: Device could cut HVAC energy use by nearly 20% in the US December 2nd, 2020

New surface treatment could improve refrigeration efficiency: A slippery surface for liquids with very low surface tension promotes droplet formation, facilitating heat transfer May 17th, 2019

Bosch Sensortec launches ideation community to foster and accelerate innovative IoT applications : Creativity hub for customers, partners, developers and makers February 18th, 2019

Iran Develops Water-Repellent Nano-Paint December 5th, 2018

Solar/Photovoltaic

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project