Home > Press > This 'nanocavity' may improve ultrathin solar panels, video cameras and more
This is an optical nanocavity made, from top to bottom, of molybdenum disulfide (MoS2), aluminum oxide and aluminum. CREDIT: University at Buffalo |
Abstract:
The future of movies and manufacturing may be in 3-D, but electronics and photonics are going 2-D; specifically, two-dimensional semiconducting materials.
One of the latest advancements in these fields centers on molybdenum disulfide (MoS2), a two-dimensional semiconductor that, while commonly used in lubricants and steel alloys, is still being explored in optoelectronics.
Recently, engineers placed a single layer of MoS2 molecules on top of a photonic structure called an optical nanocavity made of aluminum oxide and aluminum. (A nanocavity is an arrangement of mirrors that allows beams of light to circulate in closed paths. These cavities help us build things like lasers and optical fibers used for communications.)
The results, described in the paper "MoS2 monolayers on nanocavities: enhancement in light-matter interaction" published in April by the journal 2D Materials, are promising. The MoS2 nanocavity can increase the amount of light that ultrathin semiconducting materials absorb. In turn, this could help industry to continue manufacturing more powerful, efficient and flexible electronic devices.
"The nanocavity we have developed has many potential applications," says Qiaoqiang Gan, PhD, assistant professor of electrical engineering in the University at Buffalo's School of Engineering and Applied Sciences. "It could potentially be used to create more efficient and flexible solar panels, and faster photodetectors for video cameras and other devices. It may even be used to produce hydrogen fuel through water splitting more efficiently."
A single layer of MoS2 is advantageous because unlike another promising two-dimensional material, graphene, its bandgap structure is similar to semiconductors used in LEDs, lasers and solar cells.
"In experiments, the nanocavity was able to absorb nearly 70 percent of the laser we projected on it. Its ability to absorb light and convert that light into available energy could ultimately help industry continue to more energy-efficient electronic devices," said Haomin Song, a PhD candidate in Gan's lab and a co-lead researcher on the paper.
Industry has kept pace with the demand for smaller, thinner and more powerful optoelectronic devices, in part, by shrinking the size of the semiconductors used in these devices.
A problem for energy-harvesting optoelectronic devices, however, is that these ultrathin semiconductors do not absorb light as well as conventional bulk semiconductors. Therefore, there is an intrinsic tradeoff between the ultrathin semiconductors' optical absorption capacity and their thickness.
The nanocavity, described above, is a potential solution to this issue.
###
Zhiwen Liu, PhD, professor of electrical engineering at Penn State University Park, is the paper's other co-lead author. Additional authors include UB graduate students Haomin Song and Dengxin Ji; and Penn State University Park students Corey Janisch (also a co-lead researcher), Chanjing Zhou, Ana Laura Elias and Mauricio Terrones.
The research was supported by grants from the National Science Foundation, the U.S. Army Research Office and the U.S. Air Force Office of Scientific Research.
####
For more information, please click here
Contacts:
Cory Nealon
716-645-4614
Copyright © University at Buffalo
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Graphene/ Graphite
Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024
Display technology/LEDs/SS Lighting/OLEDs
Efficient and stable hybrid perovskite-organic light-emitting diodes with external quantum efficiency exceeding 40 per cent July 5th, 2024
New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024
2 Dimensional Materials
Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024
Govt.-Legislation/Regulation/Funding/Policy
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Single atoms show their true color July 5th, 2024
Possible Futures
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Materials/Metamaterials/Magnetoresistance
Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024
Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Military
Single atoms show their true color July 5th, 2024
NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024
What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024
Energy
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Photonics/Optics/Lasers
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Single atoms show their true color July 5th, 2024
Solar/Photovoltaic
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||