Home > Press > Physicists create first metamaterial with rewritable magnetic ordering
![]() |
These are magnetic force microscopy images of the patterned magnetic charge ice with 'ND' letters (initials of Notre Dame). CREDIT: Yong-Lei Wang/Zhili Xiao |
Abstract:
University of Notre Dame physicists and their collaborators have produced the first rewriteable artificial magnetic charge ice. The research, described in a paper published in Science today, shows strong potential for technological applications from information encoding, reprogrammable magnonics, and also to spintronics.
Notre Dame physicist Yong-Lei Wang and his colleagues have found a new way of designing artificial spin ices with controllable magnetic ordered states. The new magnetic metamaterial forms eight types of 'magnetic charge' ordering and enables the first rewritable artificial magnetic charge ice (MCI) which follows the "two-positive two-negative" charge ice rule. The study demonstrates techniques to switch the charge ordering both globally and locally. The 'read-write-erase' multiple recording functionalities are conveniently realized at room temperature.
Artificial spin ice is a class of lithographically created arrays of interacting magnetic nano-islands. Due to its geometrical anisotropy, the elongated nano-scale island forms a single magnetic domain which behaves like 'macro spin' with a binary degree of freedom. The 'spins' in artificial spin ice follows the 'two-in two-out' ice rule that determines the proton positional ordering in water ice.
Scientists have created artificial spin ice systems as models to investigate complex magnetism in crystals and the related physics in a material that can be tailored with specialized properties and be investigated through direct imaging. Due to the plethora of spin configurations, artificial spin ices have great potential for applications in data storage, memory, and logic devices. However, because of the large magnetic energy scales of these nanoscale islands at room temperature, achieving the magnetic ground and higher ordered states in traditional artificial spin ices have been a big challenge for nearly a decade since the first artificial spin ice was created. This essentially limits the practical application of artificial ices.
"We solved the challenge with a new way of thinking. Instead of focusing on spins, we tackled the associated magnetic charges that allow us to design and create artificial magnetic charge ices with more control," said Wang, who designed the new magnetic nano-structures and built a custom magnetic force microscope (MFM) for the research. He is the first author and co-corresponding author on the study.
The stray magnetic field distribution of each elongated magnetic island can be represented as a dumbbell of magnetic charges, one positive and one negative. Wang and his colleagues demonstrated a very simple way to redesign the spin texture of artificial spin ice while maintaining its magnetic charge map. The decoupling of magnetic spins and magnetic charges enables them to create desired and new magnetic charge ordered states by tuning the magnetic textures through an applied external magnetic field.
"Our realization of tunable artificial magnetic charge ices is similar to the creation of a 'smart' material. It provides a versatile platform to advance our knowledge about artificial spin ices, to discover new physical phenomena and to achieve desired functionalities for applications," said Zhili Xiao, who is the co-corresponding author on the study and holds a joint appointment between Argonne National Laboratory and Northern Illinois University.
The researchers also show how to use a magnetic tip of an MFM as a local perturbation of the applied field to flip 'single spin' and to manipulate local charge ordering. They demonstrated the 'read-write-erase' recording functionality of the magnetic charge ice at room temperature. They created micrometer scale magnetic charge letters 'ND' (the initial letters of Notre Dame) which is an excited magnetic state surrounded by a ground state background. This could lead to a new magnetic micro patterning technique by transferring these magnetic patterns to other materials through magnetolithography.
"By combining these magnetic nano-patterned structures with other materials such as superconductors, our rewritable magnetic charge ice provides an ideal and versatile playground to explore and control new emergent properties that can arise from novel hybrid structures," said Wai-Kwong Kwok, who is the group leader of Argonne's superconducting and magnetism group and is a co-author of this study.
####
For more information, please click here
Contacts:
Yong-Lei Wang
ylwang35@nd.edu
815-793-9572
Copyright © University of Notre Dame
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Magnetism/Magnons
Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024
FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024
Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024
Superconductivity
Researchers observe “locked” electron pairs in a superconductor cuprate August 16th, 2024
Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024
Possible Futures
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Chip Technology
New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025
Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024
Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024
Discoveries
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Announcements
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Leading the charge to better batteries February 28th, 2025
Quantum interference in molecule-surface collisions February 28th, 2025
New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025
Printing/Lithography/Inkjet/Inks/Bio-printing/Dyes
Presenting: Ultrasound-based printing of 3D materials—potentially inside the body December 8th, 2023
Simple ballpoint pen can write custom LEDs August 11th, 2023
Disposable electronics on a simple sheet of paper October 7th, 2022
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |