Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Organic computers are coming: Scientists found a molecule that will help to make organic electronic devices

The energy levels of the studied systems and a synchrotron X-ray diffractogram measured on a thin film of an organic semiconductor doped with a derivative of [3]-radialene.
CREDIT: The Lomonosov Moscow Stte University
The energy levels of the studied systems and a synchrotron X-ray diffractogram measured on a thin film of an organic semiconductor doped with a derivative of [3]-radialene.

CREDIT: The Lomonosov Moscow Stte University

Abstract:
A team of the Lomonosov MSU researchers in collaboration with their German colleagues from the Institute of Polymer Research in Dresden (Leibniz Institute) managed to find a molecule that, to their opinion, could give the impetus to the development of organic electronics. The results of the work were published in Advanced Materials.

Organic computers are coming: Scientists found a molecule that will help to make organic electronic devices

Moscow, Russia | Posted on July 17th, 2016

Scientists from the Moscow State University together with colleagues from Germany have found that a derivative of [3]-radialene, a molecule known to the science for nearly 30 years, can be used to create organic semiconductors. Dmitry Ivanov, the Head of the Laboratory of Materials Engineering at the Department of Fundamental Physics and Chemical Engineering, Moscow State University, believes that the achievement will greatly contribute to the development of organic electronics and, in particular, to fabrication of organic light emitting diodes and new classes of organic solar cells.

Organic or "plastic" electronics is a relatively young scientific field, which came to life about 15-20 years ago. Its purpose is the development of electronic devices based on organic materials. This type of devices is yet inferior to the standard silicon-based electronics in terms of performance, and also less durable. But it also has advantages -- lightness, thinness, flexibility, transparency, and most importantly -- plastic electronics is much cheaper than silicon. The main applications of organic electronics include solar cells, which will be much cheaper than the silicon-based modules (high cost is one of the reasons, which restricts the latter from covering large areas and thus make better use of the sun energy). Also, organic electronics can be used to design organic light emitting devices and field-effect transistors.

The molecule in question is the so-called dopant, whose addition to a semiconducting polymer substantially increases its electrical conductivity. The dopants for inorganic semiconductors are widely used already for decades, however, according to one of the article's co-authors, Dmitry Ivanov, for organic conductors this field is far less studied. Currently, the most commonly used are fluorinated dopants. In combination with different organic semiconductors they are able to dramatically increase their electrical conductivity, but not all polymers that are used today in the "plastic" electronics are suitable.

'Together with our Drezden colleagues we decided to design a completely new type of low molecular weight dopant for the organic semiconductor,' says Dmitry Ivanov. 'And here it was important to choose a molecule that it was not only suitable in its energy levels, but, importantly, the dopant must be well mixed with the polymer, so that in contact with the polymer it does not segregate in a separate phase, eventually crystallizing and, in fact, losing contact with the polymer'.

The main contribution of Ivanov's laboratory in this work consisted in exploring the physics of the phase transitions, physics of mixing in such binary systems, in the other words -- in finding a suitable candidate in terms of polymer physics.

And such a candidate was found. It happened to be a derivative of [3]-radialene. This is a small planar molecule in which the carbon atoms are connected to form a triangular structure. Among other potentially interesting compounds, [3]-radialene has the most energetically suitable LUMO level, i.e. the lowest unoccupied molecular orbital. This means that with its help the electrons are easily extracted from the semiconducting polymer matrix, becoming free charges and thereby increasing the conductivity of the doped material. [3]-Radialene thus becomes the strongest dopant for the organic semiconductor among those that are known in the scientific literature.

The experiments with the [3]-radialene, also confirmed by the results of quantum-chemical calculations, show that the substance is well mixed with a semiconducting polymer and allows to increase the electrical conductivity of the polymer by several tens and even hundreds of times. It has been found that up to 50 percent of the dopant's content in the polymer the phase separation does not occur, but the crystalline structure of the polymer is gradually changed. This meant that the dopant molecules are included in the polymer crystalline lattice and form the so-called co-crystal. And the formation of co-crystals, according to Ivanov, is precisely one of the main reasons for the high efficiency of the new compound.

The described new dopant, as well its fluorinated and currently the most popular analogues, belongs to the category of electron-deficient organic dopants, Dmitry Ivanov tells. 'Fluorine substituents are known to strongly pull the electrons away from the central part of the molecule, which increases the whole conductivity of the doped polymer. In the present work, the chemical structure of the dopant is completely different, and, in fact, appears to be even better. Perfect mixing of our dopant with the polymer matrix is, I think, the key to its performance. This could pave the way to fabrication of new organic solar cells with improved characteristics. We also think about production of organic field-effect transistors. I think it will give a significant boost to the development of organic electronic devices.'

####

For more information, please click here

Contacts:
Vladimir Koryagin

Copyright © Lomonosov Moscow State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Organic Electronics

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Efficient and stable hybrid perovskite-organic light-emitting diodes with external quantum efficiency exceeding 40 per cent July 5th, 2024

New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Chip Technology

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Energy

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Solar/Photovoltaic

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project