MENU

Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Optical magnetic field sensor can detect signals from the nervous system

Assistant Professor Kasper Jensen in the Quantop research group's laboratories at the Niels Bohr Institute where the experiments are carried out.
CREDIT: Ola Jakup Joensen
Assistant Professor Kasper Jensen in the Quantop research group's laboratories at the Niels Bohr Institute where the experiments are carried out.

CREDIT: Ola Jakup Joensen

Abstract:
Quantum physics: The human body is controlled by electrical impulses in, for example, the brain, the heart and nervous system. These electrical signals create tiny magnetic fields, which doctors could use to diagnose various diseases, for example diseases of the brain or heart problems in young foetuses. Researchers from the Niels Bohr Institute have now succeeded in developing a method for extremely precise measurements of such ultra-small magnetic fields with an optical magnetic field sensor. The results are published in the scientific journal, Scientific Reports.

Optical magnetic field sensor can detect signals from the nervous system

Copenhagen, Denmark | Posted on July 19th, 2016

Assistant Professor Kasper Jensen in the Quantop research group's laboratories at the Niels Bohr Institute where the experiments are carried out. (Photo: Ola Jakup Joensen)

Small magnetic fields from the human body can usually only be picked up by very sensitive superconducting magnetic field sensors that have to be cooled by liquid helium to near absolute zero (which is minus 273 degrees Celsius). But now researchers from the Niels Bohr Institute at the University of Copenhagen have developed a much cheaper and more practical optical magnetic field sensor that even works at room temperature or at body temperature.

"The optical magnetic field sensor is based on a gas of caesium atoms in a small glass container. Each caesium atom is equivalent to a small bar magnet, which is affected by external magnetic fields. The atoms and thus the magnetic field are picked up using laser light. The method is based on quantum optics and atomic physics and can be used to measure extremely small magnetic fields," explains Kasper Jensen, assistant professor in the Center for Quantum Optics, Quantop at the Niels Bohr Institute at the University of Copenhagen.

Ultra sensitive magnetic field sensor

Seen at the top is a sciatic nerve from a frog. On the bottom left is the glass container with caesium gas, which is used to measure the magnetic field from the nerve. On the bottom right is the measured magnetic field, which is generated by the magnetic fields from the electrical impulses that flow through the nerve. (Credit: Kasper Jensen, NBI)

The researchers at the Niels Bohr Institute have been developing the sensitive magnetic field sensor for several years in the Quantum research group laboratories.

The magnetic field sensor itself consists of a glass container, which has a channel that is approximately 1cm long and 1 mm wide. At the bottom of the glass container is caesium metal. Caesium evaporates into gas at room temperature and the gas atoms rise up into the small channel in the sensor head. Each caesium atom rotates around itself and the axis is like a tiny bar magnet. Now the sensor is held close to a nerve, which emits an electrical nerve pulse. The electrical pulse has a magnetic field that causes a change in the tilt of the axes of the caesium atoms and by sending a laser beam through the gas, you can read the ultra-small magnetic fields of the nerve signals.

The laboratory tests, which were carried out in collaboration with researchers from the Faculty of Health and Medical Sciences, have shown that you can use the magnetic field sensor to detect the magnetic fields from the electrical impulses from the nervous system. The tests were done on the sciatic nerve from a frog, which in many ways resemble the nerves in the human body. For practical reasons, the nerve was removed from the frog before the tests, but it is also possible to pick up electrical impulses from live frogs or from humans.

The magnetic field sensor is made up of a glass container embedded with caesium metal. The caesium evaporates into gas at room temperature and the gas atoms rise up into the small channel in the sensor head. Each caesium atom is like a tiny bar magnet. Now the sensor is held close to a nerve, which emits an electrical nerve pulse. The electrical pulse has a magnetic field that causes a change in the tilt of the axes of the caesium atoms and by sending a laser beam through the gas, you can read the ultra-small magnetic fields of the nerve signals. (Credit: Kasper Jensen, NBI)

Measures without contact

The advantage of the optical sensor is precisely that the magnetic fields and electrical impulses can be safely and easily picked up at a distance of a few millimetres or centimetres - without the sensor actually coming into contact with the body.

"We expect that the sensor will be used for special medical examinations, where it is important for the sensor not to be directly in contact with the body, for example, for diagnosing heart problems in tiny foetuses. Here the magnetic field sensor is placed on the mother's abdomen and you can easily and safely detect the heartbeat of the foetus and you will be able to diagnose any heart problems at an early stage so that the foetus can get the right treatment quickly," explains Eugene Polzik, professor and head of Quantop at the Niels Bohr Institute.

Eugene Polzik explains that you can calculate the speed at which the nerve impulses are moving from the measured signals. There are a large number of diseases where the nerves are damaged, for example, multiple scleroses, where the nerve impulses move more slowly than in people who are not ill. Other issues could, for example, be a number of eye diseases where you will be able to make the diagnosis without having to put electrodes on the eye or Alzheimer's, where you will be able to measure the electrical signals in specific nerve pathways.

####

For more information, please click here

Contacts:
Kasper Jensen
kjensen@nbi.dk
453-026-3149

Eugene Polzik
professor and head of the Center for Quantum Optics
Quantop at the Niels Bohr Institute
University of Copenhagen
+45 3532-5424
polzik@nbi.dk

Copyright © University of Copenhagen - Niels Bohr Institute

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Magnetism/Magnons

Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024

FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Three-pronged approach discerns qualities of quantum spin liquids November 17th, 2023

Brain-Computer Interfaces

Developing nanoprobes to detect neurotransmitters in the brain: Researchers synthesize fluorescent molecularly imprinted polymer nanoparticles to sense small neurotransmitter molecules and understand how they govern brain activity March 3rd, 2023

Taking salt out of the water equation October 7th, 2022

Development of dendritic-network-implementable artificial neurofiber transistors: Transistors with a fibrous architecture similar to those of neurons are capable of forming artificial neural networks. Fibrous networks can be used in smart wearable devices and robots September 24th, 2021

New brain-like computing device simulates human learning: Researchers conditioned device to learn by association, like Pavlov's dog April 30th, 2021

Possible Futures

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Nanomedicine

Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

How a milk component could eliminate one of the biggest challenges in treating cancer and other disease, including rare diseases: Nebraska startup to use nanoparticles found in milk to target therapeutics to specific cells January 17th, 2025

Discoveries

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Leading the charge to better batteries February 28th, 2025

Quantum interference in molecule-surface collisions February 28th, 2025

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

Nanobiotechnology

Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

How a milk component could eliminate one of the biggest challenges in treating cancer and other disease, including rare diseases: Nebraska startup to use nanoparticles found in milk to target therapeutics to specific cells January 17th, 2025

Photonics/Optics/Lasers

Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024

Researchers succeed in controlling quantum states in a new energy range December 13th, 2024

Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project