Home > Press > Scientists change properties of zeolites to improve hemodialysis
Abstract:
Scientists of Tomsk State University are working on changing physicochemical properties of zeolites using thermal and mechanical treatment. Based on the results of this research the scientists will be able to create a new material for a portable device for hemodialysis.
The scientists examined synthetic zeolite powder manufactured by SAPO-34 and natural zeolite of Tokay deposits (Hungary)
Synthetic powder was processed in a ball mill. Spin rate was 150 rotations per minute, processing time varied between 1 and 96 hours. Prior and after the processing the powder underwent thermal treatment. As a result material's specific surface area shrank from 506 m2/g to 102 m2/g (after 96-hour-long mechanical activation and a 1000Co annealing).
Natural zeolite of Tokay deposits underwent mechanical activation in a ball mill during 1-600 minutes. As a result of the activation mineral composition of zeolite changed: smectite, clinoptilolite, calcite, and cristobalite contents decreased several times while quartz and orthoclase contents increased. Specific surface area increased.
Natural zeolites are hard alumosilicates, that is why finding the most appropriate chopping technology is important to increase specific surface area, -says Alexander Buzimov, M.A. student in the faculty of Physics and Engineering. -Changing the specific surface area using mechanical treatment is aimed at changing properties of zeolites.
When they will have learnt to control zeolite's properties, the scientists plan to combine the mineral with nanoceramics which is manufactured by the scientists of the Institute of Strength Physics and Materials Science Siberian Branch of Russian Academy of Sciences and Tomsk State University, and thus produce a new gradient material. Thus, manufactured composite sieve will become the main part of the portable device for hemodialysis.
High-porous ceramics with desired pore size ranging from nano to macro is already produced by the scientists of Tomsk State University, Institute of Strength Physics and Materials Science Siberian Branch of Russian Academy of Sciences, Fraunhofer ICT (Germany), and University of Miskolc (Hungary). With these universities TSU has long-term agreements. The team includes both experienced scientists and students, - says Sergey Kulkov, professor of TSU.
Zeolite with high specific surface area provides effective moisture absorption. The device will be connected to a shunt, which is implanted under the skin of the patient. The blood will circulate through the composite sieve and will be cleaned.
The scientists hope to get the new material in a year, whereas the first device will be created in two years.
"Main advantage of this device is its portability. Nowadays, some analogs of traditional devices for hemodialysis are available, but all of them require the procedure to be performed in a hospital, so people are bound to their place of residence. With the new device, patients will be able to go even on a long journey. Hemodialysis can be then done at home and in an emergency situation," said Alexander Buzimov.
###
The project is carried out by The Institute of Strength Physics and Materials Science of the Russian Academy of Sciences, faculty of Physics and Engineering of Tomsk State University, Fraunhofer ICT (Germany), and University of Miskolc (Hungary).
####
For more information, please click here
Contacts:
Tatiana Arsenyeva
Copyright © Tomsk State University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Flexible electronics integrated with paper-thin structure for use in space January 17th, 2025
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Zeolites
Dendritic fibrous nanosilica: all-in-one nanomaterial for energy, environment and health November 4th, 2017
Synthesized microporous 3-D graphene-like carbons: IBS research team create carbon synthesis using zeolites as a template July 1st, 2016
Possible Futures
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
The National Space Society Congratulates SpaceX on Starship’s 7th Test Flight: Latest Test of the Megarocket Hoped to Demonstrate a Number of New Technologies and Systems January 17th, 2025
Nanomedicine
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Discoveries
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Materials/Metamaterials/Magnetoresistance
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024
FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024
Announcements
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
The National Space Society Congratulates SpaceX on Starship’s 7th Test Flight: Latest Test of the Megarocket Hoped to Demonstrate a Number of New Technologies and Systems January 17th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Flexible electronics integrated with paper-thin structure for use in space January 17th, 2025
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Nanobiotechnology
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||