Home > Press > Towards the T-1000: Liquid metals propel future electronics: Self-propelling liquid metals a critical step to future elastic electronics
![]() |
Continuous motion of a self-propelling liquid metal droplet under a pH gradient, shown at different time intervals. The droplet is placed in a fluidic channel, midway between two reservoirs filled with different electrolytes of acidic and basic nature.
CREDIT: RMIT University |
Abstract:
Science fiction is inching closer to reality with the development of revolutionary self-propelling liquid metals -- a critical step towards future elastic electronics.
While building a shape-shifting liquid metal T-1000 Terminator may still be far on the horizon, the pioneering work by researchers at RMIT University in Melbourne, Australia, is setting the foundation for moving beyond solid state electronics towards flexible and dynamically reconfigurable soft circuit systems.
Watch the YouTube video: http://bit.ly/liquidmetalresearch
Modern electronic technologies like smart phones and computers are mainly based on circuits that use solid state components, with fixed metallic tracks and semiconducting devices.
But researchers dream of being able to create truly elastic electronic components -- soft circuit systems that can act more like live cells, moving around autonomously and communicating with each other to form new circuits rather than being stuck in one configuration.
Liquid metals, in particular non-toxic alloys of gallium, have so far offered the most promising path for realising that dream.
As well as being incredibly malleable, any droplet of liquid metal contains a highly-conductive metallic core and an atomically thin semiconducting oxide skin -- all the essentials needed for making electronic circuits.
To work out how to enable liquid metal to move autonomously, Professor Kourosh Kalantar-zadeh and his group from the School of Engineering at RMIT first immersed liquid metal droplets in water.
"Putting droplets in another liquid with an ionic content can be used for breaking symmetry across them and allow them to move about freely in three dimensions, but so far we have not understood the fundamentals of how liquid metal interacts with surrounding fluid," Kalantar-zadeh said.
"We adjusted the concentrations of acid, base and salt components in the water and investigated the effect.
"Simply tweaking the water's chemistry made the liquid metal droplets move and change shape, without any need for external mechanical, electronic or optical stimulants.
"Using this discovery, we were able to create moving objects, switches and pumps that could operate autonomously - self-propelling liquid metals driven by the composition of the surrounding fluid."
The research lays the foundation for being able to use "electronic" liquid metals to make 3D electronic displays and components on demand, and create makeshift and floating electronics.
"Eventually, using the fundamentals of this discovery, it may be possible to build a 3D liquid metal humanoid on demand - like the T-1000 Terminator but with better programming," Kalantar-zadeh said.
The research, which has potential applications in a range of industries including smart engineering solutions and biomedicine, is published on 4 August in Nature Communications.
In the paper, first author Dr Ali Zavabeti details the precise conditions in which liquid metals can be moved or stretched, how fluid on their surfaces moves around and -- as a result -- how they can make different flows.
The work also explains how the electric charges that accumulate on the surface of liquid metal droplets, together with their oxide skin, can be manipulated and used.
####
For more information, please click here
Contacts:
Kourosh Kalantar-zadeh
kourosh.kalantar@rmit.edu.au
61-399-253-254
Copyright © RMIT University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
Flexible Electronics
News and information
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Possible Futures
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Chip Technology
New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025
Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024
Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024
Discoveries
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Materials/Metamaterials/Magnetoresistance
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024
FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024
Announcements
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Leading the charge to better batteries February 28th, 2025
Quantum interference in molecule-surface collisions February 28th, 2025
New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |