MENU

Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Superconductivity: After the scenario, the staging

Abstract:
Superconductivity with a high critical temperature (high Tc) continues to present a theoretical mystery. While this phenomenon is experimentally well established, no scientist has managed to explain its mechanism. In the late 90's, the British physicist Anthony Leggett proposed a scenario based on the Coulomb energy. Today, researchers at the University of Geneva (UNIGE), Switzerland, in collaboration with Leggett and his group, committed to test this scenario. Their findings challenge Leggett's conjecture, opening new avenues for the explanation of high Tc superconductivity. These results are available in the journal Physical Review X.

Superconductivity: After the scenario, the staging

Geneva, Switzerland | Posted on August 20th, 2016

Superconductivity is at the heart of intensive research in physics, in particular because of its remarkable electronic properties, such as the absence of electrical resistance. Its properties make it an indispensable element for applications in medicine, as well as in transportation and energy storage.

In the late 90's, Prof. Leggett of the University of Illinois presented a scenario for high Tc superconductivity in the cuprates, materials consisting primarily of copper and oxygen. In his scenario, the transition of the material into the superconducting state is a direct consequence of a decrease of that part of the Coulomb energy which is associated with long wavelengths and «midinfrared» frequencies. It remained to be tested experimentally; optical spectroscopy proves to be a suitable technique for probing this part of the Coulomb energy.

The team of Dirk van der Marel, professor at the Department of physics of quantum matter of UNIGE Faculty of Science, has addressed this issue and the many challenges associated to it. 'We have set up an experimental device and a protocol for measuring the long range Coulomb energy. By varying the temperature and the light frequency applied to several superconducting samples, we observed the subtle influence of superconductivity on the Coulomb energy', explains Dirk van der Marel.

The importance of chemical doping

Based on cuprate superconductors, UNIGE physicists have observed that the behavior of the Coulomb energy at the superconducting transition depends on the doping -i.e. the lack (or excess) of electrons: for some values of the doping it decreases, but for others it stagnates or even increases. Changes in temperature of the Coulomb energy appear linked to the doping of the sample: 'there is a critical doping below which the observed behaviour is opposite to Leggett's scenario', says the physicist.

These experimental advances still do not explain high Tc superconductivity in the cuprates, however, they permit to make progress in the understanding and to adapt existing theories having foundations in common with Leggett's scenario. They can be extended to the measurement of the Coulomb energy in other superconducting materials, to other phenomena such as magnetism, to other methods, and provide directions for the development of experiments which will further advance the understanding of superconductivity and other quantum phenomena.

####

For more information, please click here

Contacts:
Dirk Van der Marel
Dirk.VanDerMarel@unige.ch
41-223-796-234

Copyright © University of Geneva (UNIGE)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

Quantum Physics

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Department of Energy announces $71 million for research on quantum information science enabled discoveries in high energy physics: Projects combine theory and experiment to open new windows on the universe January 17th, 2025

‘Brand new physics’ for next generation spintronics: Physicists discover a unique quantum behavior that offers a new way to manipulate electron-spin and magnetization to push forward cutting-edge spintronic technologies, like computing that mimics the human brain January 17th, 2025

Physics

Department of Energy announces $71 million for research on quantum information science enabled discoveries in high energy physics: Projects combine theory and experiment to open new windows on the universe January 17th, 2025

‘Brand new physics’ for next generation spintronics: Physicists discover a unique quantum behavior that offers a new way to manipulate electron-spin and magnetization to push forward cutting-edge spintronic technologies, like computing that mimics the human brain January 17th, 2025

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Superconductivity

Researchers observe “locked” electron pairs in a superconductor cuprate August 16th, 2024

Shedding light on perovskite hydrides using a new deposition technique: Researchers develop a methodology to grow single-crystal perovskite hydrides, enabling accurate hydride conductivity measurements May 17th, 2024

Possible Futures

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Discoveries

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Leading the charge to better batteries February 28th, 2025

Quantum interference in molecule-surface collisions February 28th, 2025

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project