Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Kymouse success in steps to developing HIV vaccine: Kymab, the Scripps Research Institute and International AIDS Vaccine Initiative collaboration improves discovery and testing of promising HIV vaccine strategies

Abstract:
A new approach to developing a human vaccine against HIV has been developed by researchers at Kymab, a UK therapeutic antibody platform Company, The Scripps Research Institute (TSRI) of San Diego, California, and the International AIDS Vaccine Initiative (IAVI). HIV is one of the most intransigent targets for vaccine development, and no effective vaccine has been developed in thirty years of global research.

Kymouse success in steps to developing HIV vaccine: Kymab, the Scripps Research Institute and International AIDS Vaccine Initiative collaboration improves discovery and testing of promising HIV vaccine strategies

Cambridge, UK | Posted on September 12th, 2016

The research, which tested the first step in an approach to develop effective vaccines against the range of HIV variants existing worldwide, is published in Science on Thursday 8 September, 2016, and was supported by funding from the International AIDS Vaccine Initiative and the US National Institutes of Health.

The results show that Kymouse, which is a mouse that has been modified to mimic human antibody responses, is an effective platform for discovering and testing possible vaccines and suggest ways in which testing of vaccine candidates can be improved.

"We increasingly recognize that traditional vaccine strategies will not be successful against all viruses, especially not HIV," says Dennis Burton, chair of the TSRI Department of Immunology and Microbial Science and scientific director of the International AIDS Vaccine Initiative (IAVI) Neutralizing Antibody Center (NAC) at TSRI and the National Institutes of Health (NIH) Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVI-ID). "Together with the Kymab team, we have taken a novel approach in which have induced human antibodies in Kymouse that are at the beginning of the pathway to protective antibodies and which is a huge boost to our mission to develop an HIV vaccine."

The work is based on the observation that a fraction of people who become infected by HIV develop broadly neutralizing antibodies against diverse HIV strains. Such antibodies would be ideal to protect against or possibly treat HIV infection - if a vaccine could be made to elicit them.

However, these antibodies originate from a limited number of precursor antibody-producing cells in the body and acquire their unusual and protective properties only during a long course of infection. Moreover, although these cells have been activated when immunizing certain biased animal models, this is the first time it has been achieved through immunization of an immune system, as in the Kymouse, that resembles the human.

The researchers injected Kymouse strains with a nanoparticle formed of 60 copies of a small protein that mimics HIV and was designed to bind and stimulate the specific precursor cells for one class of broadly neutralizing antibody. They expected to find just one such precursor cell (among tens of millions of such cells) in each immunized mouse.

The research team then looked to see whether or not the mice had mounted an antibody response to this injection. Given the combined challenges of a complex immunogen structure and the rarity of the right antibodies, an effective response against the HIV immunogen was elicited remarkably efficiently.

"Our phenomenal results with the teams at TSRI and IAVI came from work at the boundaries of protein engineering, immunology and vaccine technology," explains Professor Allan Bradley, Chief Technical Officer at Kymab and Director Emeritus of the Wellcome Trust Sanger Institute, who developed the Kymouse platform. "Using Kymouse, we show how an advanced vaccine candidate can search out the one cell among tens of million antibody-producing cells and make it proliferate.

"Kymouse can deliver antibody responses that we need to build effective HIV vaccines."

The team validated their antibody response by sequencing genes from more than 10,000 cell samples, and showed that genes from responding mice had the expected sequence for precursors to broadly neutralizing antibodies against the HIV target.

"It is a big step forward in this branch of HIV vaccine development," says William Schief, TSRI Professor and Director of Vaccine Design for the IAVI Neutralizing Antibody Center at TSRI, in whose lab the vaccine nanoparticle was developed. "We have the first proof of principle that this HIV vaccine strategy and our vaccine candidate can work in a human immune system and trigger the first step in the pathway to developing broadly neutralizing and protective antibodies against the virus.

"It is the very sort of response we'd want to see as we test components of a future vaccine."

HIV has proved an extremely difficult challenge in vaccine development. The new research shows that Kymouse can produce antibodies of the type that could evolve to confer protection, suggests ways in which the immunization regime can be improved and indicates that Kymab's technologies will support and accelerate the search for other, rarer and perhaps even more effective antibodies.

"About 35 million people have died of HIV/AIDS and 36 million are currently infected. Although a vaccine is the most likely way to stem this loss, no successful vaccine has been found in more than thirty years of HIV research," says Professor Paul Kellam, Vice President of Infectious Diseases and Vaccines at Kymab. "This is a pressing need and these results show that our Kymouse technologies can serve a vital part in the search for effective vaccines that help to protect against this most challenging disease."

"This dramatic proof of concept gives us hope we can find better broadly effective vaccines for HIV and, indeed, for other infections, using the human immune system to help guide us along the best path."

Participating Centers

Kymab Ltd, Babraham Research Campus, Cambridge, UK
Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, USA
IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, USA
Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA

####

About Don Powell Associates LTD
About Kymab

Kymab is a leading biopharmaceutical company focused on the discovery and development of fully human monoclonal antibody drugs using its proprietary Kymouse™ antibody platform.

Kymouse™ has been designed to maximize the diversity of human antibodies produced in response to immunization with antigens. Selecting from a broad diversity of fully human antibodies assures the highest probability of finding that rare drug candidate with best-in-class characteristics. The Kymouse™ naturally matures these molecules to highly potent drugs obviating the need for further time-consuming modifications. Kymab is using the platform for its internal drug discovery programs and in partnership with pharmaceutical companies. Kymab commenced operations in 2010 and has raised over US$120m of equity financing which includes $90m Series B financing. It has an experienced management team with a successful track record in drug discovery and development and has numerous therapeutic antibody programs in immune-oncology, auto-immunity; hematology, infectious disease and other areas. www.kymab.com

About The Scripps Research Institute

The Scripps Research Institute (TSRI) is one of the world's largest independent, not-for-profit organizations focusing on research in the biomedical sciences. TSRI is internationally recognized for its contributions to science and health, including its role in laying the foundation for new treatments for cancer, rheumatoid arthritis, hemophilia, and other diseases. An institution that evolved from the Scripps Metabolic Clinic founded by philanthropist Ellen Browning Scripps in 1924, the institute now employs more than 2,500 people on its campuses in La Jolla, CA, and Jupiter, FL, where its renowned scientists--including two Nobel laureates and 20 members of the National Academy of Science, Engineering or Medicine--work toward their next discoveries. The institute's graduate program, which awards PhD degrees in biology and chemistry, ranks among the top ten of its kind in the nation. For more information, see www.scripps.edu.

About International Aids Vaccine Initiative (IAVI)

The International AIDS Vaccine Initiative (IAVI) is a global not-for-profit organization whose mission is to ensure the development of safe, effective, accessible, preventive HIV vaccines for use throughout the world. Founded in 1996 and operational in 25 countries, IAVI and its network of collaborators research and develop vaccine candidates. IAVI was founded with the generous support of the Alfred P. Sloan Foundation, The Rockefeller Foundation, The Starr Foundation, and Until There's A Cure Foundation. Other major supporters include the Bill & Melinda Gates Foundation, the Foundation for the National Institutes of Health, The John D. Evans Foundation, The New York Community Trust, the James B. Pendleton Charitable Trust; the Governments of Canada, Denmark, India, Ireland, Japan, The Netherlands, Norway, Spain, Sweden, the United Kingdom, and the United States, the Basque Autonomous Government (Spain), the European Union as well as the National Institute of Allergy and Infectious Diseases and The City of New York, Economic Development Corporation; multilateral organizations such as The World Bank and The OPEC Fund for International Development; corporate donors including BD (Becton, Dickinson & Co.), Bristol-Myers Squibb, Continental Airlines, Google Inc., Pfizer Inc, and Thermo Fisher Scientific Inc.; leading AIDS charities such as Broadway Cares/Equity Fights AIDS; and many generous individuals from around the world. For more information, see www.iavi.org.

Contacts:
For Kymab
Don Powell
Don Powell Associates Ltd

+44 (0)778 6858220
+44 (0)1223 515436

Mary Clark, Supriya Mathur and Hollie Vile
Hume Brophy
+44 (0)207 862 6390


For TSRI
Madeline McCurry-Schmidt
Science Writer
The Scripps Research Institute
Tel: 858-784-9254


Office of Communications
The Scripps Research Institute
Tel: +1 858-784-2666
Fax: +1 858-784-8118


For IAVI
Arne Näveke
Executive Director Advocacy, Policy, Communications
International AIDS Vaccine Initiative (IAVI)
+1.212.847.1055 (office)
+1.646.623.47.85 (mobile)

Copyright © Don Powell Associates LTD

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Publication

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Nanomedicine

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Nanobiotechnology

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024

Research partnerships

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project