Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Containing our 'electromagnetic pollution': MXene can protect mobile devices from electromagnetic interference

Researchers at Drexel University have developed a nanomaterial, called MXene, that could potentially be used in electronics devices to block out and insulate electromagnetic waves.
CREDIT: Drexel University
Researchers at Drexel University have developed a nanomaterial, called MXene, that could potentially be used in electronics devices to block out and insulate electromagnetic waves.

CREDIT: Drexel University

Abstract:
If you've ever heard your engine rev through your radio while listening to an AM station in your car, or had your television make a buzzing sound when your cell phone is near it, then you've experienced electromagnetic interference. This phenomenon, caused by radio waves, can originate from anything that creates, carries or uses an electric current, including television and internet cables, and, of course cell phones and computers. A group of researchers at Drexel University and the Korea Institute of Science & Technology is working on cleaning up this electromagnetic pollution by containing the emissions with a thin coating of a nanomaterial called MXene.

Containing our 'electromagnetic pollution': MXene can protect mobile devices from electromagnetic interference

Philadelphia, PA | Posted on September 13th, 2016

Electromagnetic radiation is everywhere -- that's been the case since the beginning of the universe. But the proliferation of electronics in recent decades has contributed both to the volume of radiation generated on our planet and its noticeability.

"As technology evolves and electronics become lighter, faster and smaller, their electromagnetic interference increases dramatically," said Babak Anasori, PhD, a research assistant professor in the A.J. Drexel Nanomaterials Institute, and a co-author of the paper "Electromagnetic Interference Shielding with 2D Transition Metal Carbides (MXenes)," which was recently published in the journal Science. "Internal electromagnetic noise coming from different electronic parts can have a serious effect on everyday devices such as cell phones, tablets and laptops, leading to malfunctions and overall degradation of the device."

These effects range from temporary monitor "fuzziness," strange buzzing from a Bluetooth device, to a slow in processing speed of a mobile device. Shielding against electromagnetic interference typically includes encasing the interior of devices with a shroud or cage of a conductive metal like copper or aluminum, or a coating of metallic ink. And while this is effective, it also adds weight to the device and is considered a restriction on how small the device can be designed.

"In general, adequate shielding can be achieved by using thick metals, however, material consumption and weight leave them at a disadvantage for use in aerospace and telecommunication applications," Anasori said. "Therefore, it is of great importance to achieve better protection with thinner films."

Their findings suggest that a few-atoms thin titanium carbide, one of about 20 two-dimensional materials in the MXene family discovered by Drexel University scientists, can be more effective at blocking and containing electromagnetic interference, with the added benefit of being extremely thin and easily applied in a coating just by spraying it onto any surface -- like paint.

"With technology advancing so fast, we expect smart devices to have more capabilities and become smaller every day. This means packing more electronic parts in one device and more devices surrounding us," said Yury Gogotsi, PhD, Distinguished University and Trustee Chair professor in the College of Engineering and Director of the A.J. Nanomaterials Institute who proposed the idea and led this research. "To have all these electronic components working without interfering with each other, we need shields that are thin, light and easy to apply to devices of different shapes and sizes. We believe MXenes are going to be the next generation of shielding materials for portable, flexible and wearable electronics."

Researchers tested samples of MXene films ranging in thickness from just a couple micrometers (one-thousandth of a millimeter) up to 45 micrometers, which is slightly thinner than a human hair. This is significant because a material's shielding effectiveness, a measure of a material's ability to block electromagnetic radiation from passing through it, tends to increase with its thickness, and for purposes of this research the team was trying to identify the thinnest iteration of a shielding material that could still effectively block the radiation.

What they found is that the thinnest film of MXene is competing with copper and aluminum foils when it comes to shielding effectiveness. And by increasing thickness of the MXene to 8 micrometers, they could achieve 99.9999 percent blockage of radiation with frequencies covering the range from cell phones to radars.

In comparison to other synthetic materials, such as graphene or carbon fibers, the thin sample of MXene performed much better. In fact, to achieve commercial electromagnetic shielding requirements, currently used carbon-polymer composites would have to be more than one millimeter thick, which would add quite a bit of heft to a device like an iPhone, that is just seven millimeters thick.

The key to MXene's performance lies in its high electrical conductivity and two-dimensional structure. According to the authors, when electromagnetic waves come in contact with MXene, some are immediately reflected from its surface, while others pass through the surface but they lose energy amidst the material's atomically thin layers. The lower energy electromagnetic waves are eventually reflected back and forth off the internal layers until they're completely absorbed in the structure.

One other result, that already portends MXene's usefulness in protecting wearable devices, is that its shielding effectiveness is just as stout when it is combined with a polymer to make a composite coating. And, on weight basis, it even outperforms pure copper.

"This finding is significant since several commercial requirements for an electromagnetic interference shield product are engrained in a single material," Gogotsi said. "MXene displays many of these characteristics, including high shielding effectiveness, low density, small thickness, high flexibility and simple processing. So it is an excellent candidate for use in numerous applications."

This technological development resulted from a fundamental study of MXene properties, which was funded by the National Science Foundation. The next step for the research team will be to find support for a broader study on other MXenes, selecting the best shielding material and testing it in devices.

####

For more information, please click here

Contacts:
Britt Faulstick

215-895-2617

Copyright © Drexel University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Wireless/telecommunications/RF/Antennas/Microwaves

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Optical-fiber based single-photon light source at room temperature for next-generation quantum processing: Ytterbium-doped optical fibers are expected to pave the way for cost-effective quantum technologies November 3rd, 2023

Chip-based dispersion compensation for faster fibre internet: SUTD scientists developed a novel CMOS-compatible, slow-light-based transmission grating device for the dispersion compensation of high-speed data, significantly lowering data transmission errors and paving the way for June 30th, 2023

Researchers demonstrate co-propagation of quantum and classical signals: Study shows that quantum encryption can be implemented in existing fiber networks January 20th, 2023

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Materials/Metamaterials/Magnetoresistance

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project