MENU

Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Oxford Instruments systems now facilitate water purification technology

Abstract:
As key providers of leading edge process technology equipment for HBLED manufacture, Oxford Instruments has been a major part of the HBLED industry since its very beginning. Now the company’s systems are being used to facilitate the introduction of UV LEDs, being utilised in water purification systems to bring safe drinking water to remote places.

Oxford Instruments systems now facilitate water purification technology

Abingdon, UK | Posted on September 27th, 2016

Oxford Instruments PlasmaPro1000 Stratum PECVD tool is used for depositing high quality dielectrics essential in the manufacture of UV LEDs. The film quality, batch size and throughput make it an ideal tool to facilitate this latest technology. The systems are ideal for the production of UV LEDs as they can produce the thicker passivation layers that UV LEDs need to operate reliably at high powers while maintaining film quality and low cost of ownership. The batch size of upto 14 x 4” wafers is enabled by the chamber design which ensures each wafer within the batch achieves the same amount of high specification film deposition. Advanced tool technology ensures fast plasma clean of the chamber, which is automatically controlled through Optical Emission Spectroscopy (OES), and maximum yield and uptime are then realised.

“UV LEDs have several advantages over traditional UV light sources” comments Dr Mark Dineen, Optoelectronics Product Manager at Oxford Instruments Plasma Technology. “They operate at low DC power, meaning that they can be powered from a solar energy source. Combined with the fact that they are lighter and more robust than the traditional sources, this makes them ideally suited for use in remote, off grid locations where clean water supplies are limited or none existent.”

“UV LED’s are also tuned to the optimum wavelength for the removal of bacteria, making them significantly more effective in purifying water than traditional light sources. Lastly, UV LED’s do not contain mercury, an essential component part of traditional UV lamps. Consequently there is a significant reduction in the environmental impact risk, through both accidental contamination and the need for recycling when comparing UV LED’s and traditional UV lamps.”

Oxford Instruments Plasma Technology continues to provide innovative high technology plasma processing solutions, powering today’s advances and protecting tomorrow’s environment.

####

About Oxford Instruments plc
Oxford Instruments designs, supplies and supports high-technology tools and systems with a focus on research and industrial applications. Innovation has been the driving force behind Oxford Instruments' growth and success for over 50 years, and its strategy is to effect the successful commercialisation of these ideas by bringing them to market in a timely and customer-focused fashion. The first technology business to be spun out from Oxford University, Oxford Instruments is now a global company and is listed on the London Stock Exchange (OXIG). Its objective is to be the leading provider of new generation tools and systems for the research and industrial sectors with a focus on nanotechnology. Its key market sectors include nano-fabrication and nano-materials. The company’s strategy is to expand the business into the life sciences arena, where nanotechnology and biotechnology intersect

This involves the combination of core technologies in areas such as low temperature, high magnetic field and ultra high vacuum environments; Nuclear Magnetic Resonance; X-ray, electron, laser and optical based metrology; atomic force microscopy; optical imaging; advanced growth, deposition and etching.

Oxford Instruments aims to pursue responsible development and deeper understanding of our world through science and technology. Its products, expertise, and ideas address global issues such as energy, environment, security and health.

About Oxford Instruments Plasma Technology

Oxford Instruments Plasma Technology offers flexible, configurable process tools and leading-edge processes for the precise, controllable and repeatable engineering of micro- and nano-structures. Our systems provide process solutions for the etching of nanometre sized features, nanolayer deposition and the controlled growth of nanostructures.

These solutions are based on core technologies in plasma-enhanced deposition and etch, ion-beam deposition and etch, atomic layer deposition, deep silicon etch and physical vapour deposition. Products range from compact stand-alone systems for R&D, through batch tools and up to clustered cassette-to-cassette platforms for high-throughput production processing.

For more information, please click here

Contacts:
Susie Williams
Marketing Communications Manager
Oxford Instruments Plasma Technology
susie.williams@oxinst.com
Tel: +44 (0)1934 837000
Fax: +44 (0)1934 837001

Copyright © Oxford Instruments plc

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Tools

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

New 2D multifractal tools delve into Pollock's expressionism January 17th, 2025

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Turning up the signal November 8th, 2024

Water

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Computational system streamlines the design of fluidic devices: This computational tool can generate an optimal design for a complex fluidic device such as a combustion engine or a hydraulic pump December 9th, 2022

Taking salt out of the water equation October 7th, 2022

Scientists capture a ‘quantum tug’ between neighboring water molecules: Ultrafast electrons shed light on the web of hydrogen bonds that gives water its strange properties, vital for many chemical and biological processes July 8th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project