Home > Press > Nanoscale engineering transforms particles into 'LEGO-like' building blocks
![]() |
Tiny particles transformed into “LEGO- like” modular building blocks. |
Abstract:
Led by the University of Melbourne and published today in Nature Nanotechnology, the work holds promise for micro and nano scale applications including drug delivery, chemical sensing and energy storage.
Frank Caruso, Professor and ARC Australian Laureate Fellow, Department of Chemical and Biomolecular Engineering said that the team nanoengineered building blocks to tailor the development of advanced materials.
"Nano-objects are difficult to manipulate, as they're too tiny to see directly by eye, far too small to hold, and often have incompatible surfaces for assembling into ordered structures," he said.
"Assembling LEGO bricks into complex shapes is relatively easy, as LEGO studs ensure the blocks stick together wherever you want.
"So we used a similar strategy as a basis for assembling nano-objects into complex architectures by first coating them with a universally adhesive material (a polyphenol) so that they resemble the studs on LEGO bricks.
"This allows for a range of nano-objects to stick together around a template, where the template determines the final shape of the assembled structure," Professor Caruso said.
Different materials can be assembled using this approach. This simple and modular approach has been demonstrated for 15 representative materials to form different sizes, shapes, compositions and functionalities.
Compositions include polymeric particles, metal oxide particles and wires, noble metal nanoparticles, coordination polymer nanowires, nanosheets and nanocubes, and biologicals.
The building blocks can be used to construct complex 3D superstructures, including core-satellite, hollow, hierarchically organised supraparticles, and macroscopic hybrid materials.
"Many previous methods have been limited by particle-specific assembly," Professor Caruso said.
"However, this new polyphenol-based particle approach can be adapted to different functions and allows different building blocks to be assembled into super-structures," he said.
The "studs" in the LEGO brick-like structures, known as C/G studs from the polyphenols, provide a superstructuring process for assembling and inter-locking the building blocks using multiple anchor points.
The "C/G studs" on the building block nanoparticles can further interact with a secondary substrate and/or coordinate with metal ions, interlocking the structures.
This provides a platform for the rapid generation of superstructured assemblies with enhanced chemical diversity and structural flexibility across a wide range of length scales, from nanometres to centimetres.
####
For more information, please click here
Contacts:
Anne Rahilly
arahilly@unimelb.edu.au
61-390-355-380
Copyright © University of Melbourne
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
Chemistry
Quantum interference in molecule-surface collisions February 28th, 2025
News and information
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Possible Futures
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Sensors
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Discoveries
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Announcements
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Leading the charge to better batteries February 28th, 2025
Quantum interference in molecule-surface collisions February 28th, 2025
New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025
Energy
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage
Leading the charge to better batteries February 28th, 2025
Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024
Breakthrough brings body-heat powered wearable devices closer to reality December 13th, 2024
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |