Home > Press > Nanoparticle vaccinates mice against dengue fever
![]() |
This transmission electron micrograph (TEM) depicts a number of round, Dengue virus particles that were revealed in this tissue specimen. CREDIT CDC/ Frederick Murphy |
Abstract:
Every year, more than 350 million people in over 120 countries contact dengue fever, which can cause symptoms ranging from achy muscles and a skin rash to life-threatening hemorrhagic fever. Researchers have struggled to create effective vaccines against dengue virus, in part because four distinct serotypes, or strains, cause the disease and a vaccine must immunize against all four individually. Now, a new type of nanoparticle, described in PLOS Neglected Tropical Diseases, effectively vaccinated mice against one of the serotypes and could be created to target all four.
Attempts at using live dengue viruses to develop a dengue fever vaccine have often led to an imbalance in immunity to the four dengue serotypes--for instance, one recent candidate had lower efficacy against serotype 2. Previous infection with one serotype of dengue, or protection against just one serotype, can lead to more severe disease if a person contracts other serotypes, so it's vital that vaccines are available that specifically target all four strains.
To create a new dengue virus vaccine, Stefan Metz, Shaomin Tian in the laboratories of Aravinda de Silva, Chris Luft and Joe DeSimone at the University of Carolina, Chapel Hill, USA designed nanoparticles of various shapes and sizes using Particle Replication in Non-wetting Template (PRINT) technology. Each nanoparticle was studded with copies of DENV2-E protein, a key protein from serotype 2 of the virus. Then, the researchers immunized 31 mice with a control injection or one of five different formulations of the nanoparticle, each with different size particles ranging from 55x70 nanometers to 200x200 nanometers. During the course of the immunizations, as well as four times after two boosters had been given, the researchers drew blood from the mice to follow their immune responses. Bone marrow and lymph node samples were also taken at various points after immunization.
After immunization with the DENV2-E nanoparticles, mice had a specific antibody response to serotype 2 of the dengue virus, but not the other three serotypes. Compared to mice vaccinated with only the soluble DENV2-E proteins, the nanoparticle formulations led to a stronger immune response. Although previous studies of similar nanoparticles have found an effect of nanoparticle shape and size on antibody responses, such a trend was not seen at significant levels for the DENV2-E vaccine. Future studies will be required to test whether the antibody levels prevent dengue infection as well as whether similar nanoparticles can be develop for all dengue serotypes.
"Though only focusing on DENV2, these findings form the basis of a safe and efficacious dengue virus candidate," the authors say. "In addition, this platform can be used to develop safe vaccine candidates for other flaviviruses such as Zika virus, where pregnant women are the target group for vaccination."
Funding: This study was funded by US National Institutes of Health grant U19 AI109784-01. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Competing Interests: MS and KH hare employed by the commercial company Liquidia Technologies. JD is a founder and maintains a financial interest in Liquidia Technologies.
####
For more information, please click here
Contacts:
PLOS Neglected Tropical Diseases
plosntds@plos.org
Copyright © PLOS
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Govt.-Legislation/Regulation/Funding/Policy
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Possible Futures
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Nanomedicine
Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025
Discoveries
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Announcements
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Leading the charge to better batteries February 28th, 2025
Quantum interference in molecule-surface collisions February 28th, 2025
New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025
Nanobiotechnology
Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |