MENU

Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Nanopolymer-modified protein array can pinpoint hard-to-find cancer biomarker

Abstract:
Three-dimensionally Functionalized Reverse Phase Glycoprotein Array for Cancer Biomarker Discovery and Validation
Li Pan1, Hillary Andaluz Aguilar2, Linna Wang3, Anton Iliuk3,4, and W. Andy Tao1,2,3,4,5
1 Department of Medicinal Chemistry & Molecular Pharmacology
2 Department of Chemistry
3 Department of Biochemistry, Purdue University, West Lafayette, IN
4 Tymora Analytical Operations, West Lafayette, IN
5 Center for Cancer Research, Purdue University, West Lafayette, IN
Glycoproteins have vast structural diversity which plays an important role in many biological processes and have great potential as disease biomarkers. Here we report a novel functionalized reverse phase protein array (RPPA), termed polymer-based reverse phase GlycoProtein Array (polyGPA), to specifically capture and profile glycoproteomes, and validate glycoproteins. Nitrocellulose membrane functionalized with globular hydroxyaminodendrimers was used to covalently capture pre-oxidized glycans on glycoproteins from complex protein samples such as biofluids. The captured glycoproteins were subsequently detected using the same validated antibodies as in RPPA. We demonstrated the outstanding specificity, sensitivity, and quantitative capabilities of polyGPA by capturing and detecting purified as well as endogenous alpha-1-acid glycoprotein (AGP) in human plasma. We further applied quantitative N-glycoproteomics and the strategy to validate a panel of glycoproteins identified as potential biomarkers for bladder cancer by analyzing urine glycoproteins from bladder cancer patients or matched healthy individuals.

Nanopolymer-modified protein array can pinpoint hard-to-find cancer biomarker

West Lafayette, IN | Posted on November 17th, 2016

A Purdue University biochemist has developed a novel method for detecting certain types of proteins that serve as indicators for cancer and other diseases.

Glycoproteins are formed when sugars attach to and modify a protein. In some cases, a combination of glycoproteins present in a sample of blood or urine could be an indicator of disease or cancer.

But those glycoproteins can be elusive. There has been no antibody to differentiate between them and regular proteins. And the complex and bulky sugar groups can make it difficult for even standard protein-detection antibodies to find their targets.

W. Andy Tao, a Purdue professor of biochemistry, has developed a novel protein array, a high throughput platform to analyze multiple proteins in parallel, for separating glycoproteins from unmodified proteins. Tao also demonstrated its effectiveness for identifying glycoproteins associated with bladder cancer. The findings were published Monday (Nov. 14) in the Journal of the American Chemical Society.

Tao developed a nano-sized polymer, called polyGPA, that attaches to the sugar groups of glycoproteins and brings them to the surface of the protein array. The nanopolymer also repositions the glycoprotein so that the antibodies used to detect unmodified proteins can better reach their targets.

"There are many sugar types and combinations. Sugar modification can be a very important indication of disease state," Tao said. "A panel of proteins modified by sugars may be an indication of a particular disease."

Tao said tests showed his method is 17 times to 25 times more likely to identify proteins that might have otherwise been missed in regular testing procedures. He was also able to identify glycoproteins associated with bladder cancer in a urine sample.

"It is possible to use our platform to identify these sugar-modified proteins as a biomarker for bladder cancer," Tao said.

Tao will work to commercialize his nanopolymer-modified protein array through his company, Tymora Analytical Operations, which operates in the Purdue University Research Park. The company makes the pIMAGO nanopolymer, which can be used to determine whether cancer drugs have been effective against biochemical processes that can lead to cancer cell formation, and polyMAC, a nanopolymer that helps scientists retrieve and study proteins that are undergoing processes related to cancer cell formation.

####

For more information, please click here

Contacts:
W. Andy Tao
taow@purdue.edu
765-494-9605

Copyright © Purdue University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025

Next-generation drug delivery innovation! DGIST develops precision therapeutics using exosomes April 25th, 2025

Cancer

Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025

Govt.-Legislation/Regulation/Funding/Policy

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Department of Energy announces $71 million for research on quantum information science enabled discoveries in high energy physics: Projects combine theory and experiment to open new windows on the universe January 17th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Possible Futures

Lattice-driven charge density wave fluctuations far above the transition temperature in Kagome superconductor April 25th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025

Nanomedicine

Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025

Next-generation drug delivery innovation! DGIST develops precision therapeutics using exosomes April 25th, 2025

Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Discoveries

Lattice-driven charge density wave fluctuations far above the transition temperature in Kagome superconductor April 25th, 2025

An earth-abundant mineral for sustainable spintronics: Iron-rich hematite, commonly found in rocks and soil, turns out to have magnetic properties that make it a promising material for ultrafast next-generation computing April 25th, 2025

HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025

Nanophotonic platform boosts efficiency of nonlinear-optical quantum teleportation April 25th, 2025

Announcements

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Nanophotonic platform boosts efficiency of nonlinear-optical quantum teleportation April 25th, 2025

Quantum sensors tested for next-generation particle physics experiments: New research shows that the specialized sensors can detect particles more precisely April 25th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Nanobiotechnology

Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025

Next-generation drug delivery innovation! DGIST develops precision therapeutics using exosomes April 25th, 2025

Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project