Home > Press > The researchers created a tiny laser using nanoparticles
The researchers at Aalto University have made an array of nanoparticles combined with dye molecules to act as a tiny laser. The lasing occurs in a dark mode and the laser light leaks out from the edges of array. CREDIT Antti Paraoanu |
Abstract:
Researchers at Aalto University, Finland are the first to develop a plasmonic nanolaser that operates at visible light frequencies and uses so-called dark lattice modes.
The laser works at length scales 1000 times smaller than the thickness of a human hair. The lifetimes of light captured in such small dimensions are so short that the light wave has time to wiggle up and down only a few tens or hundreds of times. The results open new prospects for on-chip coherent light sources, such as lasers, that are extremely small and ultrafast.
The laser operation in this work is based on silver nanoparticles arranged in a periodic array. In contrast to conventional lasers, where the feedback of the lasing signal is provided by ordinary mirrors, this nanolaser utilizes radiative coupling between silver nanoparticles. These 100-nanometer-sized particles act as tiny antennas. To produce high intensity laser light, the interparticle distance was matched with the lasing wavelength so that all particles of the array radiate in unison. Organic fluorescent molecules were used to provide the input energy (the gain) that is needed for lasing.
Light from the dark
A major challenge in achieving lasing this way was that light may not exist long enough in such small dimensions to be helpful. The researchers found a smart way around this potential problem: they produced lasing in dark modes.
"A dark mode can be intuitively understood by considering regular antennas: A single antenna, when driven by a current, radiates strongly, whereas two antennas -- if driven by opposite currents and positioned very close to each other -- radiate very little," explains Academy Professor Päivi Törmä. "A dark mode in a nanoparticle array induces similar opposite-phase currents in each nanoparticle, but now with visible light frequencies", she continues.
"Dark modes are attractive for applications where low power consumption is needed. But without any tricks, dark mode lasing would be quite useless because the light is essentially trapped at the nanoparticle array and cannot leave", adds staff scientist Tommi Hakala. "But by utilizing the small size of the array, we found an escape route for the light. Towards the edges of the array, the nanoparticles start to behave more and more like regular antennas that radiate to the outer world", tells Ph.D. student Heikki Rekola.
The research team used the nanofabrication facilities and cleanrooms of the national OtaNano research infrastructure.
The results have been published in the journal Nature Communications.
####
For more information, please click here
Contacts:
Paivi Torma
358-503-826-770
Copyright © Aalto University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Quantum Dynamics research group:
Centre of Excellence in Computational Nanoscience, COMP:
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Wireless/telecommunications/RF/Antennas/Microwaves
HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024
Researchers demonstrate co-propagation of quantum and classical signals: Study shows that quantum encryption can be implemented in existing fiber networks January 20th, 2023
HKUST researchers develop a novel integration scheme for efficient coupling between III-V and silicon November 18th, 2022
Videos/Movies
New X-ray imaging technique to study the transient phases of quantum materials December 29th, 2022
Solvent study solves solar cell durability puzzle: Rice-led project could make perovskite cells ready for prime time September 23rd, 2022
Scientists prepare for the world’s smallest race: Nanocar Race II March 18th, 2022
Possible Futures
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Chip Technology
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Optical computing/Photonic computing
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
New method cracked for high-capacity, secure quantum communication July 5th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Photonics/Optics/Lasers
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Single atoms show their true color July 5th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||