Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Manufacturing platform makes intricate biocompatible micromachines

Fabrication and complete assembly of a Geneva drive device using the iMEMS method. The left panel shows the layer-by-layer fabrication of support structures and assembly of gear components. The image on the right shows the complete device after the layers have been sealed.
—Photo by Sau Yin Chin/Columbia Engineering
Fabrication and complete assembly of a Geneva drive device using the iMEMS method. The left panel shows the layer-by-layer fabrication of support structures and assembly of gear components. The image on the right shows the complete device after the layers have been sealed. —Photo by Sau Yin Chin/Columbia Engineering

Abstract:
New technique uses biomaterials to make complex devices -- implantable microrobots -- that could be used for many implantable applications, including drug delivery and stents, and could lead to advances in precision medicine.

Manufacturing platform makes intricate biocompatible micromachines

New York, NY | Posted on January 7th, 2017

A team of researchers led by Biomedical Engineering Professor Sam Sia has developed a way to manufacture microscale-sized machines from biomaterials that can safely be implanted in the body. Working with hydrogels, which are biocompatible materials that engineers have been studying for decades, Sia has invented a new technique that stacks the soft material in layers to make devices that have three-dimensional, freely moving parts. The study, published online January 4, 2017, in Science Robotics, demonstrates a fast manufacturing method Sia calls "implantable microelectromechanical systems" (iMEMS).

By exploiting the unique mechanical properties of hydrogels, the researchers developed a "locking mechanism" for precise actuation and movement of freely moving parts, which can provide functions such as valves, manifolds, rotors, pumps, and drug delivery. They were able to tune the biomaterials within a wide range of mechanical and diffusive properties and to control them after implantation without a sustained power supply such as a toxic battery. They then tested the "payload" delivery in a bone cancer model and found that the triggering of release of doxorubicin from the device over 10 days showed high treatment efficacy and low toxicity, at 1/10 of the standard systemic chemotherapy dose.

"Overall, our iMEMS platform enables development of biocompatible implantable microdevices with a wide range of intricate moving components that can be wirelessly controlled on demand and solves issues of device powering and biocompatibility," says Sia, also a member of the Data Science Institute. "We're really excited about this because we've been able to connect the world of biomaterials with that of complex, elaborate medical devices. Our platform has a large number of potential applications, including the drug delivery system demonstrated in our paper which is linked to providing tailored drug doses for precision medicine."

Most current implantable microdevices have static components rather than moving parts and, because they require batteries or other toxic electronics, have limited biocompatibility. Sia's team spent more than eight years working on how to solve this problem. "Hydrogels are difficult to work with, as they are soft and not compatible with traditional machining techniques," says Sau Yin Chin, lead author of the study who worked with Sia. "We have tuned the mechanical properties and carefully matched the stiffness of structures that come in contact with each other within the device. Gears that interlock have to be stiff in order to allow for force transmission and to withstand repeated actuation. Conversely, structures that form locking mechanisms have to be soft and flexible to allow for the gears to slip by them during actuation, while at the same time they have to be stiff enough to hold the gears in place when the device is not actuated. We also studied the diffusive properties of the hydrogels to ensure that the loaded drugs do not easily diffuse through the hydrogel layers."

The team used light to polymerize sheets of gel and incorporated a stepper mechanization to control the z-axis and pattern the sheets layer by layer, giving them three-dimensionality. Controlling the z-axis enabled the researchers to create composite structures within one layer of the hydrogel while managing the thickness of each layer throughout the fabrication process. They were able to stack multiple layers that are precisely aligned and, because they could polymerize a layer at a time, one right after the other, the complex structure was built in under 30 minutes.

Sia's iMEMS technique addresses several fundamental considerations in building biocompatible microdevices, micromachines, and microrobots: how to power small robotic devices without using toxic batteries, how to make small biocompatible moveable components that are not silicon which has limited biocompatibility, and how to communicate wirelessly once implanted (radio frequency microelectronics require power, are relatively large, and are not biocompatible). The researchers were able to trigger the iMEMS device to release additional payloads over days to weeks after implantation. They were also able to achieve precise actuation by using magnetic forces to induce gear movements that, in turn, bend structural beams made of hydrogels with highly tunable properties. (Magnetic iron particles are commonly used and FDA-approved for human use as contrast agents.)

In collaboration with Francis Lee, an orthopedic surgeon at Columbia University Medical Center at the time of the study, the team tested the drug delivery system on mice with bone cancer. The iMEMS system delivered chemotherapy adjacent to the cancer, and limited tumor growth while showing less toxicity than chemotherapy administered throughout the body.

"These microscale components can be used for microelectromechanical systems, for larger devices ranging from drug delivery to catheters to cardiac pacemakers, and soft robotics," notes Sia. "People are already making replacement tissues and now we can make small implantable devices, sensors, or robots that we can talk to wirelessly. Our iMEMS system could bring the field a step closer in developing soft miniaturized robots that can safely interact with humans and other living systems."

###

The study, "Additive manufacturing of hydrogel-based materials for next-generation implantable medical devices," was supported by an NSF CAREER award, NIH R01 grant (HL095477-05), and NSF ECCS-1509748. Chin was supported by the National Science Scholarship (PhD) awarded by the Agency for Science, Technology and Research (Singapore). The researchers have a patent pending.

####

About Columbia University School of Engineering and Applied Science
Columbia Engineering is one of the top engineering schools in the U.S. and one of the oldest in the nation. Based in New York City, the School offers programs to both undergraduate and graduate students who undertake a course of study leading to the bachelor's, master's, or doctoral degree in engineering and applied science. Columbia Engineering's nine departments offer 16 majors and more than 30 minors in engineering and the liberal arts, including an interdisciplinary minor in entrepreneurship with Columbia Business School. With facilities specifically designed and equipped to meet the laboratory and research needs of faculty and students, Columbia Engineering is home to a broad array of basic and advanced research installations, from the Columbia Nano Initiative and Data Science Institute to the Columbia Genome Center. These interdisciplinary centers in science and engineering, big data, nanoscience, and genomic research are leading the way in their respective fields while our engineers and scientists collaborate across the University to solve theoretical and practical problems in many other significant areas.

For more information, please click here

Contacts:
Holly Evarts

347-453-7408

Copyright © Columbia University School of Engineering and Applied Science

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

PAPER:

Science Robotics:

Sam Sia:

Molecular and Microscale Bioenigneering Laboratory:

Columbia Engineering:

Data Science Institute:

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Robotics

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

A color-based sensor to emulate skin's sensitivity: In a step toward more autonomous soft robots and wearable technologies, EPFL researchers have created a device that uses color to simultaneously sense multiple mechanical and temperature stimuli December 8th, 2023

Femtosecond laser technique births "dancing microrobots": USTC's breakthrough in multi-material microfabrication August 11th, 2023

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

MEMS

Bosch launches longevity program for industrial and IoT applications: High-performance accelerometer, IMU and pressure sensor with 10-year availability July 23rd, 2020

CEA-Leti Develops Tiny Photoacoustic-Spectroscopy System For Detecting Chemicals & Gases: Paper at Photonics West to Present Detector that Could Cost 10x Less Than Existing Systems and Prompt Widespread Use of the Technology February 4th, 2020

MEMS & Sensors Executive Congress Technology Showcase Finalists Highlight Innovations in Automotive, Biomedical and Consumer Electronics: MSIG MEMS & Sensors Executive Congress – October 22-24, 2019, Coronado, Calif. October 1st, 2019

ULVAC Launches Revolutionary PZT Piezoelectric Thin-film Process Technology and HVM Solution for MEMS Sensors/Actuators: Enabling Reliable, High-quality Film Production for Next Generation Devices August 16th, 2019

Nanomedicine

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project