Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials

Fig. 1 (a) Calculated refractive index and (b) extinction coefficient spectra of Ge with four different porosities (Pr) (0%, 40%, 60% and 75%) as a function of wavelength. (c) Left, schematic view of proposed thin-film coatings with different Pr (i.e. 0%, 40%, 60% and 75%). Right, thin-film structures represented by calculated colors with different Pr (i.e. 0%, 40%, 60% and 75%) at the same thickness of 20 nm. (d) Calculated reflectance spectra of ultra-thin optical coatings (Pr-Ge/Au) with different Pr. (e) Contour plot of reflectance variation for Pr-Ge/Au with four different Pr as a function of Ge thickness (tGe), and of wavelength. White dashed lines in each contour plot indicate variations in the resonance dip. (f ) Color representations from calculated reflectance in (e).
CREDIT
DGIST
Fig. 1 (a) Calculated refractive index and (b) extinction coefficient spectra of Ge with four different porosities (Pr) (0%, 40%, 60% and 75%) as a function of wavelength. (c) Left, schematic view of proposed thin-film coatings with different Pr (i.e. 0%, 40%, 60% and 75%). Right, thin-film structures represented by calculated colors with different Pr (i.e. 0%, 40%, 60% and 75%) at the same thickness of 20 nm. (d) Calculated reflectance spectra of ultra-thin optical coatings (Pr-Ge/Au) with different Pr. (e) Contour plot of reflectance variation for Pr-Ge/Au with four different Pr as a function of Ge thickness (tGe), and of wavelength. White dashed lines in each contour plot indicate variations in the resonance dip. (f ) Color representations from calculated reflectance in (e). CREDIT DGIST

Abstract:
DGIST announced that Professor Kyung-in Jang's research team succeeded in developing a technology that can control various color changes by coating several nanometers of semiconducting materials on a metal substrate through joint research with a research team led by professor Young-min Song of GIST.

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials

Daegu, Korea | Posted on January 17th, 2017

Professor Kyung-in Jang's research team has succeeded in changing the unique color of metals such as gold, silver, aluminum, etc. with strong thin-film interference effect caused by light reflected on the surface of the metals and semiconducting materials by coating an ultra-thin layer of several nanometers (1 nanometer is one one-billionth of a meter) of semiconductor substances on the metals.

There have been previous studies that show that color changes depend on the thickness of ultra-thin film of semiconducting materials such as germanium coated on a gold substrate; however, there have been some difficulties due to the rapid change of colors and with color darkening techniques.

The research team coated a thin germanium film of 5 to 25 nanometers on a gold substrate by utilizing oblique angle deposition (OAD). As a result, they succeeded in producing various colors such as yellow, orange, blue, and purple at will according to the thickness and deposition angle of the germanium coating.

It was confirmed that the range of color expression expanded and the purity of color was enhanced by making a porous structure with a large number of fine holes that have a significant presence in the germanium layer. By applying the oblique angle deposition method, the variation and purity of colors were also varied according to the thickness change of the germanium film in nanometers.

Professor Kyung-in Jang from DGIST's Department of Robotics Engineering said, "The result of this research is the development of a simple method of applying various colors to existing electronic devices and currently we have succeeded in expressing single colors, but we may also be able to coat patterns such as symbols and pictures. In the future, I think it can be used in coating visual designs on flexible devices such as solar cells, wearable devices, and displays that are used for various purposes including building exterior walls. It can also be applied in camouflage by coating things with the same pattern or color as the surrounding objects."

Meanwhile, this research outcome was published on December 9, 2016 in the online edition of Nanoscale, an international academic journal in the field of nanotechnology, and the research was supported by the basic research project (collective research) of the National Research Foundation of Korea.

####

For more information, please click here

Contacts:
Dahye Kim

82-537-851-163

Copyright © DGIST

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Journal Reference

Related News Press

Display technology/LEDs/SS Lighting/OLEDs

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Wearable electronics

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Breakthrough brings body-heat powered wearable devices closer to reality December 13th, 2024

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Flexible Electronics

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Law enforcement/Anti-Counterfeiting/Security/Loss prevention

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Possible Futures

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Chip Technology

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024

Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024

Discoveries

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Materials/Metamaterials/Magnetoresistance

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024

FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Leading the charge to better batteries February 28th, 2025

Quantum interference in molecule-surface collisions February 28th, 2025

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

Military

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Single atoms show their true color July 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Energy

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Solar/Photovoltaic

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project