Home > Press > Metallic hydrogen, once theory, becomes reality: Harvard physicists succeed in creating 'the holy grail of high-pressure physics'
Microscopic images of the stages in the creation of atomic molecular hydrogen: Transparent molecular hydrogen (left) at about 200 GPa, which is converted into black molecular hydrogen, and finally reflective atomic metallic hydrogen at 495 GPa. Courtesy of Isaac Silvera |
Abstract:
Nearly a century after it was theorized, Harvard scientists have succeeded in creating the rarest - and potentially one of the most valuable - materials on the planet.
Directed and edited by Ned Brown, cinematography by Kai-Jae Wang/Harvard Staff
The material - atomic metallic hydrogen - was created by Thomas D. Cabot Professor of the Natural Sciences Isaac Silvera and post-doctoral fellow Ranga Dias. In addition to helping scientists answer fundamental questions about the nature of matter, the material is theorized to have a wide range of applications, including as a room-temperature superconductor. The creation of the rare material is described in a January 26 paper published in Science.
"This is the holy grail of high-pressure physics," Silvera said. "It's the first-ever sample of metallic hydrogen on Earth, so when you're looking at it, you're looking at something that's never existed before."
To create it, Silvera and Dias squeezed a tiny hydrogen sample at 495 gigapascal, or more than 71.7 million pounds-per-square inch - greater than the pressure at the center of the Earth. At those extreme pressures, Silvera explained, solid molecular hydrogen -which consists of molecules on the lattice sites of the solid - breaks down, and the tightly bound molecules dissociate to transforms into atomic hydrogen, which is a metal.
While the work offers an important new window into understanding the general properties of hydrogen, it also offers tantalizing hints at potentially revolutionary new materials.
"One prediction that's very important is metallic hydrogen is predicted to be meta-stable," Silvera said. "That means if you take the pressure off, it will stay metallic, similar to the way diamonds form from graphite under intense heat and pressure, but remains a diamond when that pressure and heat is removed."
Understanding whether the material is stable is important, Silvera said, because predictions suggest metallic hydrogen could act as a superconductor at room temperatures.
"That would be revolutionary," he said. "As much as 15 percent of energy is lost to dissipation during transmission, so if you could make wires from this material and use them in the electrical grid, it could change that story."
Among the holy grails of physics, a room temperature superconductor, Dias said, could radically change our transportation system, making magnetic levitation of high-speed trains possible, as well as making electric cars more efficient and improving the performance of many electronic devices.
The material could also provide major improvements in energy production and storage - because superconductors have zero resistance energy could be stored by maintaining currents in superconducting coils, and then be used when needed.
Though it has the potential to transform life on Earth, metallic hydrogen could also play a key role in helping humans explore the far reaches of space, as the most powerful rocket propellant yet discovered.
"It takes a tremendous amount of energy to make metallic hydrogen," Silvera explained. "And if you convert it back to molecular hydrogen, all that energy is released, so it would make it the most powerful rocket propellant known to man, and could revolutionize rocketry."
The most powerful fuels in use today are characterized by a "specific impulse" - a measure, in seconds, of how fast a propellant is fired from the back of a rocket - of 450 seconds. The specific impulse for metallic hydrogen, by comparison, is theorized to be 1,700 seconds.
"That would easily allow you to explore the outer planets," Silvera said. "We would be able to put rockets into orbit with only one stage, versus two, and could send up larger payloads, so it could be very important."
To create the new material, Silvera and Dias turned to one of the hardest materials on Earth - diamond.
But rather than natural diamond, Silvera and Dias used two small pieces of carefully polished synthetic diamond which were then treated to make them even tougher and then mounted opposite each other in a device known as a diamond anvil cell.
"Diamonds are polished with diamond powder, and that can gouge out carbon from the surface," Silvera said. "When we looked at the diamond using atomic force microscopy, we found defects, which could cause it to weaken and break."
The solution, he said, was to use a reactive ion etching process to shave a tiny layer - just five microns thick, or about one-tenth of a human hair - from the diamond's surface. The diamonds were then coated with a thin layer of alumina to prevent the hydrogen from diffusing into their crystal structure and embrittling them.
After more than four decades of work on metallic hydrogen, and nearly a century after it was first theorized, seeing the material for the first time, Silvera said, was thrilling.
"It was really exciting," he said. "Ranga was running the experiment, and we thought we might get there, but when he called me and said, 'The sample is shining,' I went running down there, and it was metallic hydrogen.
"I immediately said we have to make the measurements to confirm it, so we rearranged the lab...and that's what we did," he said. "It's a tremendous achievement, and even if it only exists in this diamond anvil cell at high pressure, it's a very fundamental and transformative discovery."
####
For more information, please click here
Contacts:
Peter Reuell
617-496-8070
Copyright © Harvard University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Graphene/ Graphite
Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024
Superconductivity
Researchers observe “locked” electron pairs in a superconductor cuprate August 16th, 2024
Physics
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
New method cracked for high-capacity, secure quantum communication July 5th, 2024
Finding quantum order in chaos May 17th, 2024
Hardware
The present and future of computing get a boost from new research July 21st, 2023
Videos/Movies
New X-ray imaging technique to study the transient phases of quantum materials December 29th, 2022
Solvent study solves solar cell durability puzzle: Rice-led project could make perovskite cells ready for prime time September 23rd, 2022
Scientists prepare for the world’s smallest race: Nanocar Race II March 18th, 2022
Visualizing the invisible: New fluorescent DNA label reveals nanoscopic cancer features March 4th, 2022
Possible Futures
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Chip Technology
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Materials/Metamaterials/Magnetoresistance
Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024
Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Energy
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Automotive/Transportation
Researchers’ approach may protect quantum computers from attacks March 8th, 2024
Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage
What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||