Home > Press > NREL research pinpoints promise of polycrystalline perovskites
Mengjin Yang (left), Kai Zhu, Ye Yang, Matt Beard, David Moore and Elisa Miller are co-authors of a new paper in Nature Energy about perovskites. Photo by Dennis Schroeder / NREL |
Abstract:
A team of scientists from the Energy Department's National Renewable Energy Laboratory (NREL) determined that surface recombination limits the performance of polycrystalline perovskite solar cells.
Considerable research into perovskites at NREL and elsewhere has proved the material's effectiveness at converting sunlight into electricity, routinely topping 20 percent efficiency. The sunlight creates mobile electrons whose movement generates the power but upon encountering defects can slip into a non-productive process. Known as a recombination, this process reduces the efficiency of a solar cell. For the cell to be the most efficient, the recombination must occur slowly.
With prior studies into perovskites focusing on bulk recombination, one area left unexamined until now concerned the surface recombination in lead iodide perovskites. NREL's scientists determined recombination in other parts of a methylammonium perovskite film isn't as important as what's happening on the surface, both the top and bottom.
Matthew Beard and his colleagues within NREL's Chemistry and Nanoscience Center studied surface recombination in single-crystal and polycrystalline films using transient reflection spectroscopy. Their findings, Top and bottom surfaces limit carrier lifetime in lead iodide perovskite films, appear in Nature Energy.
"What's important is to know where the recombination is coming from," said Beard, lead author of the research paper. "There are multiple sources of possible recombination. In order to improve your device, you're asked to get rid of all non-radiative recombination. Typically people forget about surfaces. They think about grain boundaries. They think about bulk defects and so forth."
Beard's co-authors are all from NREL: Ye Yang, Mengjin Yang, David T. Moore, Yong Yan, Elisa M. Miller, and Kai Zhu.
Beard said the research determined surface recombination emerged as an obstacle to overcome. Surface recombination directly affects the performance of a photovoltaic device. The ability to engineer surfaces stands poised to benefit perovskite-based optoelectronic applications. A fast surface recombination can be used to design photodetectors, while lasers and light-emitting diodes require a slower speed.
A second study that concurrently appeared in the journal Physical Chemistry Chemical Physics was authored by Mengjin Yang, Yining Zeng, Zhen Li, DongHoe Kim, Chun-Sheng Jiang, Jao van de Lagemaat, and Kai Zhu further strengthened the conclusions of the paper. This study, using high-resolution fluorescence-lifetime imaging, also showed that surface recombination is the determining factor instead of grain boundary recombination.
The researchers compared two types of samples: single crystals and polycrystalline films. Surprisingly surface recombination is worse for single crystalline samples compared to the polycrystalline samples found in solar cell devices. Chemically, excess methylammonium iodide was present on the surface of the polycrystalline film but absent on the single-crystal sample.
"That seems to help," Beard said. "The single crystal has a lead-rich surface and a faster surface recombination."
The research suggested a light coating of a protective material on the surface of the polycrystalline thin films could further improve the performance of perovskite solar cells.
###
Funds for the research came from the Department of Energy's Office of Science.
####
About National Renewable Energy Laboratory
NREL is the U.S. Department of Energy's primary national laboratory for renewable energy and energy efficiency research and development. NREL is operated for the Energy Department by The Alliance for Sustainable Energy, LLC.
For more information, please click here
Contacts:
David Glickson
303-275-4097
Copyright © National Renewable Energy Laboratory
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Perovskites
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Efficient and stable hybrid perovskite-organic light-emitting diodes with external quantum efficiency exceeding 40 per cent July 5th, 2024
Laboratories
A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024
NRL discovers two-dimensional waveguides February 16th, 2024
Thin films
Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024
Govt.-Legislation/Regulation/Funding/Policy
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Single atoms show their true color July 5th, 2024
Possible Futures
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Energy
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Solar/Photovoltaic
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||