Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Tiny nanoclusters could solve big problems for lithium-ion batteries

Illinois professor Prashant Jain’s research group found that ultrasmall nanoclusters of copper selenide could make superionic solid electrolytes for next-generation lithium-ion batteries.

Photo by L. Brian Stauffer
Illinois professor Prashant Jain’s research group found that ultrasmall nanoclusters of copper selenide could make superionic solid electrolytes for next-generation lithium-ion batteries. Photo by L. Brian Stauffer

Abstract:
As devices become smaller and more powerful, they require faster, smaller, more stable batteries. University of Illinois chemists have developed a superionic solid that could be the basis of next-generation lithium-ion batteries.

Tiny nanoclusters could solve big problems for lithium-ion batteries

Champaign, IL | Posted on February 21st, 2017

Chemistry professor Prashant Jain and graduate students Sarah White and Progna Banerjee described the material – ultrasmall nanoclusters of copper selenide – in the journal Nature Communications.

“Now that we’re seeing this nanoelectronics boom, we need tiny batteries that can be put on a chip, and that can’t happen with liquid electrolytes,” Jain said. “We are using nanostructured materials to achieve the properties at the heart of lithium-ion technology. They have much more thermal and mechanical stability, there are no leakage issues, and we can make extremely thin electrolyte layers so we can miniaturize batteries.”

Standard lithium-ion and other ionic batteries are filled with a liquid electrolyte that the lithium ions move through. The ions flow one direction when the battery is being used, and the opposite direction when the battery is charged. However, liquid electrolytes have several drawbacks: They require volume, degrade as the battery cycles, leak and are highly flammable, which has led to explosions in phones, laptops and other devices. Though solid electrolytes are considerably more stable, ions move through them much more slowly, making them less efficient for battery applications.

The copper selenide nanocluster electrolyte combines the best of both liquid and solid electrolytes: It has the stability of a solid, but ions easily move through it like a liquid. Copper selenide is known to be superionic at high temperatures, but the tiny nanoclusters are the first demonstration of the material being superionic at room temperature.

The researchers discovered this superionic property by accident while investigating copper selenide’s surface reactivity. They noticed that ultrasmall nanoclusters – about 2 nanometers in diameter – looked very different from larger copper selenide nanoparticles in an electron microscope.

“That was our first hint that they have different structures,” Jain said. “We investigated further, and we realized that these small clusters are actually semiliquid at room temperature.”

The reason for the semiliquid, superionic property is the special structure of the nanoclusters, Jain said. The much larger selenium ions form a crystal lattice, while the smaller copper ions move around them like a liquid. This crystal structure is a result of internal strain in the clusters.

“With around 100 atoms, these nanoclusters are right at the interface of molecules and nanoparticles,” Jain said. “Right now, the big push is to make every nanoparticle in a sample exactly the same size and shape. It turns out with these clusters, every single cluster is exactly the same structure. Somehow, at this size, the electronic structure of the material is so stable that every single cluster has the same arrangement of atoms.“

The researchers are working to incorporate the nanoclusters into a battery, measure the conductivity of lithium ions and compare the performance with existing solid-state electrolytes and liquid electrolytes.

The American Chemical Society Petroleum Research Fund supported this work.

####

For more information, please click here

Contacts:
Liz Ahlberg Touchstone
Biomedical sciences editor
217-244-1073


Prashant Jain
217-333-3417

Copyright © University of Illinois at Urbana-Champaign

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The paper “Liquid-like cationic sub-lattice in copper selenide clusters” is available online. doi:10.1038/ncomms14514:

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Materials/Metamaterials/Magnetoresistance

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project