Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Laser activated gold pyramids could deliver drugs, DNA into cells without harm: Microstructures create temporary pores in cells

This is a scanning-electron microscope image of chemically-fixed HeLa cancer cells on the substrate. The tips of the pyramids create tiny holes in the cell membranes, allowing molecular cargo to diffuse into the cells.
CREDIT
(Image courtesy of Harvard SEAS)
This is a scanning-electron microscope image of chemically-fixed HeLa cancer cells on the substrate. The tips of the pyramids create tiny holes in the cell membranes, allowing molecular cargo to diffuse into the cells. CREDIT (Image courtesy of Harvard SEAS)

Abstract:
The ability to deliver cargo like drugs or DNA into cells is essential for biological research and disease therapy but cell membranes are very good at defending their territory. Researchers have developed various methods to trick or force open the cell membrane but these methods are limited in the type of cargo they can deliver and aren't particularly efficient.

Laser activated gold pyramids could deliver drugs, DNA into cells without harm: Microstructures create temporary pores in cells

Cambridge, MA | Posted on March 27th, 2017

Now, researchers from the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) have developed a new method using gold microstructures to deliver a variety of molecules into cells with high efficiency and no lasting damage. The research is published in ACS Nano.

"Being able to effectively deliver large and diverse cargos directly into cells will transform biomedical research," said Nabiha Saklayen, a PhD candidate in the Mazur Lab at SEAS and first author of the paper. "However, no current single delivery system can do all the things you need to do at once. Intracellular delivery systems need to be highly efficient, scalable, and cost effective while at the same time able to carry diverse cargo and deliver it to specific cells on a surface without damage. It's a really big challenge."

In previous research, Saklayen and her collaborators demonstrated that gold, pyramid-shaped microstructures are very good at focusing laser energy into electromagnetic hotspots. In this research, the team used a fabrication method called template stripping to make surfaces -- about the size of a quarter -- with 10 million of these tiny pyramids.

"The beautiful thing about this fabrication process is how simple it is," said Marinna Madrid, coauthor of the paper and PhD candidate in the Mazur Lab. "Template-stripping allows you to reuse silicon templates indefinitely. It takes less than a minute to make each substrate, and each substrate comes out perfectly uniform. That doesn't happen very often in nanofabrication."

The team cultured HeLa cancer cells directly on top of the pyramids and surrounded the cells with a solution containing molecular cargo.

Using nanosecond laser pulses, the team heated the pyramids until the hotspots at the tips reached a temperature of about 300 degrees Celsius. This very localized heating -- which did not affect the cells -- caused bubbles to form right at the tip of each pyramid. These bubbles gently pushed their way into the cell membrane, opening brief pores in the cell and allowing the surrounding molecules to diffuse into the cell.

"We found that if we made these pores very quickly, the cells would heal themselves and we could keep them alive, healthy and dividing for many days," Saklayen said.

Each HeLa cancer cell sat atop about 50 pyramids, meaning the researchers could make about 50 tiny pores in each cell. The team could control the size of the bubbles by controlling the laser parameters and could control which side of the cell to penetrate.

The molecules delivered into the cell were about the same size as clinically relevant cargos, including proteins and antibodies.

Next, the team plans on testing the methods on different cell types, including blood cells, stem cells and T cells. Clinically, this method could be used in ex vivo therapies, where unhealthy cells are taken out of the body, given cargo like drugs or DNA, and reintroduced into the body.

"This work is really exciting because there are so many different parameters we could optimize to allow this method to work across many different cell types and cargos," said Saklayen. "It's a very versatile platform."

Harvard's Office of Technology Development has filed patent applications and is considering commercialization opportunities.

"It's great to see how the tools of physics can greatly advance other fields, especially when it may enable new therapies for previously difficult to treat diseases," said Eric Mazur, the Balkanski Professor of Physics and Applied Physics and senior author of the paper.

###

This research was supported by the National Science Foundation and the Howard Hughes Medical Institute. It was coauthored by Marinus Huber, Marinna Madrid, Valeria Nuzzo, Daryl Inna Vulis, Weilu Shen, Jeffery Nelson, Arthur McClelland and Alexander Heisterkamp.

####

For more information, please click here

Contacts:
Leah Burrows

617-496-1351

Copyright © Harvard John A. Paulson School of Engineering and Applied Sciences

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Nanomedicine

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Patents/IP/Tech Transfer/Licensing

Getting drugs across the blood-brain barrier using nanoparticles March 3rd, 2023

Study finds nanomedicine targeting lymph nodes key to triple negative breast cancer treatment: In mice, nanomedicine can remodel the immune microenvironment in lymph node and tumor tissue for long-term remission and lung tumor elimination in this form of metastasized breast cance May 13th, 2022

Metasurfaces control polarized light at will: New research unlocks the hidden potential of metasurfaces August 13th, 2021

Arrowhead Pharmaceuticals Announces Closing of Agreement with Takeda November 27th, 2020

Nanobiotechnology

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project