Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Wood filter removes toxic dye from water

Abstract:
Engineers at the University of Maryland have developed a new use for wood: to filter water. Liangbing Hu of the Energy Research Center and his colleagues added nanoparticles to wood, then used it to filter toxic dyes from water. The team started with a block of linden wood, which they then soaked in palladium – a metal used in cars’ catalytic converters to remove pollutants from the exhaust. In this new filter, the palladium bonds to particles of dye. The wood’s natural channels, that once moved water and nutrients between the leaves and roots, now allow the water to flow past the nanoparticles for efficient removal of the toxic dye particles. The water, tinted with methylene blue, slowly drips through the wood and comes out clear.

Wood filter removes toxic dye from water

College Park, MD | Posted on April 21st, 2017

“This could be used in areas where wastewater contains toxic dye particles,” said Amy Gong, a materials science graduate student, and co-first author of the research paper.

The purpose of the study was to analyze wood via an engineering lens. The researchers did not compare the filter to other types of filters; rather, they wanted to prove that wood can be used to remove impurities.

“We are currently working on using a wood filter to remove heavy metals, such as lead and copper, from water,” said Liangbing Hu, the lead researcher on the project. “We are also interested in scaling up the technology for real industry applications.” Hu is a professor of materials science and a member of the University of Maryland’s Energy Research Center.

“We found that the wood’s channels are actually slightly bent, and they are connected by pores, which slightly increase the time that the water is in contact with the wood,” said Siddhartha Das, professor of mechanical engineering. His team helped Hu’s study the flow of water through the wood.

The research, which was published March 31, 2017, in the journal ACS Nano, is the latest innovative use of wood by the UMD team. They previously made a battery and a supercapacitor out of wood; a battery from a leaf; and made wood transparent then used it for windows.

####

For more information, please click here

Contacts:
Martha Heil

Copyright © University of Maryland

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Videos/Movies

New X-ray imaging technique to study the transient phases of quantum materials December 29th, 2022

Solvent study solves solar cell durability puzzle: Rice-led project could make perovskite cells ready for prime time September 23rd, 2022

Scientists prepare for the world’s smallest race: Nanocar Race II March 18th, 2022

Visualizing the invisible: New fluorescent DNA label reveals nanoscopic cancer features March 4th, 2022

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Environment

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

New method in the fight against forever chemicals September 13th, 2024

Catalyzing environmental cleanup: A highly active and selective molecular catalyst and electrified membrane: Innovative electrochemical catalyst breaks down trichloroethylene pollutants at unprecedented rate September 13th, 2024

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

Water

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Computational system streamlines the design of fluidic devices: This computational tool can generate an optimal design for a complex fluidic device such as a combustion engine or a hydraulic pump December 9th, 2022

Taking salt out of the water equation October 7th, 2022

Scientists capture a ‘quantum tug’ between neighboring water molecules: Ultrafast electrons shed light on the web of hydrogen bonds that gives water its strange properties, vital for many chemical and biological processes July 8th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project