Home > Press > Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures
Jing Shi, a professor of physics |
Abstract:
In the world of electronics, where the quest is always for smaller and faster units with infinite battery life, topological insulators (TI) have tantalizing potential.
In a paper published today in "Science Advances," Jing Shi, a professor of physics and astronomy at the University of California, Riverside, and colleagues at Massachusetts Institute of Technology (MIT), and Arizona State University report they have created a TI film just 25 atoms thick that adheres to an insulating magnetic film, creating a "heterostructure." This heterostructure makes TI surfaces magnetic at room temperatures and higher, to above 400 Kelvin or more than 720 degrees Fahrenheit.
The surfaces of TI are only a few atoms thick and need little power to conduct electricity. If TI surfaces are made magnetic, current only flows along the edges of the devices, requiring even less energy. Thanks to this so-called quantum anomalous Hall effect, or QAHE, a TI device could be tiny and its batteries long lasting, Shi said.
Engineers love QAHE because it makes devices very robust, that is, hearty enough to stand up against defects or errors, so that a faulty application, for instance, doesn't crash an entire operating system.
Topological insulators are the only materials right now that can achieve the coveted QAHE, but only after they are magnetized, and therein lies the problem: TI surfaces aren't naturally magnetic.
Scientists have been able to achieve magnetism in TI by doping, i.e. introducing magnetic impurities to the material, which also made it less stable, Shi said. The doping allowed TI surfaces to demonstrate QAHE, but only at extremely low temperatures--a few hundredths of a degree in Kelvin above absolute zero, or about 459 degrees below zero Fahrenheit--not exactly conducive to wide popular use.
Many scientists blamed the doping for making QAHE occur only at very low temperatures, Shi said, which prompted researchers to start looking for another technique to make TI surfaces magnetic.
Enter UCR's SHINES (Spins and Heat in Nanoscale Electronic Systems) lab, a Department of Energy-funded energy frontier research center at UCR that Shi leads and is focused on developing films, composites and other ways to harvest or use energy more efficiently from nano (think really small, as in molecular or atom-sized) technology.
In 2015, Shi's lab first created heterostructures of magnetic films and one-atom-thick graphene materials by using a technique called laser molecular beam epitaxy. The same atomically flat magnetic insulator films are critical for both graphene and topological insulators.
"The materials have to be in intimate contact for TI to acquire magnetism," Shi said. "If the surface is rough, there won't be good contact. We're good at making this magnetic film atomically flat, so no extra atoms are sticking out."
UCR's lab then sent the materials to its collaborators at MIT, who used molecular beam epitaxy to build 25 atomic TI layers on top of the magnetic sheets, creating the heterostructures, which were then sent back to UCR for device fabrication and measurements.
More research is needed to make TI show the quantum anomalous Hall effect (QAHE) at high temperatures, and then make the materials available for miniaturization in electronics, Shi said, but the SHINES lab findings show that by taking the heterostructures approach, TI surfaces can be made magnetic--and robust--at normal temperatures.
Making smaller, faster devices operate at the same or higher levels of efficiency as their larger, slower predecessors "doesn't happen naturally," Shi said.
"Engineers work hard to make all the devices work the same way and it takes a lot of engineering to get there."
UCR SHINES lab researcher Chi Tang is first author on the paper in "Science Advances," along with co-first author Dr. Cui-Zu Chang, formerly of MIT, and now at Penn State University. The project also included several collaborators from UCR, MIT, Penn State and Arizona State University, Shi said.
####
For more information, please click here
Contacts:
Sarah Nightingale
951-827-4580
Copyright © University of California - Riverside
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Hardware
The present and future of computing get a boost from new research July 21st, 2023
A Carbon Nanotube Microprocessor Mature Enough to Say Hello: Three new breakthroughs make commercial nanotube processors possible March 2nd, 2020
Powering the future: Smallest all-digital circuit opens doors to 5 nm next-gen semiconductor February 11th, 2020
Govt.-Legislation/Regulation/Funding/Policy
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Single atoms show their true color July 5th, 2024
Possible Futures
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Chip Technology
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Nanoelectronics
Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023
Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022
Reduced power consumption in semiconductor devices September 23rd, 2022
Atomic level deposition to extend Moore’s law and beyond July 15th, 2022
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Military
Single atoms show their true color July 5th, 2024
NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024
What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024
Research partnerships
Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024
Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024
Researchers’ approach may protect quantum computers from attacks March 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||