Home > Press > Sharks with frickin' lasers: Gold nanoparticles fry cancer on glowing mice
Thomas Flaig, MD, describes the use of gold nanoparticles, lasers, antibodies and bioluminescence to target bladder cancer. CREDIT University of Colorado Cancer Center |
Abstract:
A University of Colorado Cancer Center study takes a new approach to killing cancer: Why not fry it into oblivion with vibrating gold nanoparticles? "But what about the frickin' lasers?" you may ask. Don't worry. There are lasers. And bioluminescence too.
Very basically it works like this: An "antibody" is an agent of the immune system that attaches to an "antigen" -- usually antibodies recognize antigens on a virus or bacteria and attach to the invader to mark it for destruction by other immune cells. In this case, CU Cancer Center researchers engineered an antibody to recognize and attach to a protein called EGFR. Bladder tumors but not healthy cells often slather themselves in EGFR. Other researchers have hooked molecules of chemotherapy to antibodies that recognize EGFR and have used this antibody-antigen system to micro-target the delivery of chemotherapy. In this case, researchers used nifty chemistry to attach gold nanoparticles to antibodies (because, gold nanoparticles).
Imagine it: Now you have a two-part thingy made from a gold nanoparticle attached to an antibody that seeks out and binds to EGFR on the surface of bladder tumors. If only there were a way evilize the nanoparticles!
Oh, but there is. It's called plasmon resonance, which is a physics term for the process that makes nanoparticles vibrate in certain frequencies of light. You can "tune" nanoparticles to experience plasmon resonance at a chosen frequency. This is undoubtedly very groovy but what's really going on is energy transfer from the light to the particle in a way that creates heat -- and a lot of it in a very small area. In this study, researchers tuned their gold nanoparticles to experience plasmon resonance in near infrared light -- a wavelength of light that is generally safe by itself. Finally, when they shined a laser's near infrared light on the nanoparticle-antibody conjugate, it aggravated the nanoparticles, which heated up and fried the nearby tumor tissue like Han Solo with a DL-44 heavy blaster pistol.
Evaluating the results required bioluminescence.
That's because the test tumors were very small bumps on the bladders of mice. It wouldn't have been possible to measure them by hand. Instead, tumors were grown using cells that express the enzyme luciferase, which makes them glow, like fireflies... The more a mouse bladder glowed, the more cancer was present. And conversely, the less it glowed, the more cancer had been killed by hot nanoparticles.
The study compared mice injected with EGFR-directed nanoparticles and laser light to mice only treated with laser light and found that, indeed, tumors in mice with targeted gold nanoparticles glowed less than their counterparts in the control group. In fact, these tumors glowed less than they had before treatment, implying that the technique had successfully slowed and even reversed tumor growth. Side effects were minimal.
"We are highly encouraged by these results," says Thomas Flaig, MD, associate dean for Clinical Research at University of Colorado School of Medicine and Chief Clinical Research Officer of UCHealth.
The project represents a long-term collaboration between Flaig and Won Park, PhD, the N. Rex Sheppard Professor in the Department of Electrical, Computer & Energy Engineering at CU Boulder.
"It's one of the great stories in scientific collaboration - Won was on a sabbatical of sorts here on campus and we sat down and started talking about ideas around our mutual interests. How could we bring the nanorods to a tumor? The answer was EGFR. What cancer site would allow us to deliver infrared light? Oh, the bladder! And how would be deliver it? Well, in bladder cancer there are already lights on the scopes used in clinical practice that could do the job. It's been an interesting problem-solving experience pursuing this technique from a futuristic idea to something that now shows real promise in animal models," Flaig says.
The article titled "The Antineoplastic Activity of Photothermal Ablative Therapy with Targeted Gold Nanorods in an Orthotopic Urinary Bladder Cancer Model" is published online ahead of print in the journal Bladder Cancer.
####
For more information, please click here
Contacts:
Garth Sundem
Copyright © University of Colorado
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Cancer
The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024
New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024
Govt.-Legislation/Regulation/Funding/Policy
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Single atoms show their true color July 5th, 2024
Possible Futures
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Nanomedicine
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Materials/Metamaterials/Magnetoresistance
Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024
Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Nanobiotechnology
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024
Photonics/Optics/Lasers
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Single atoms show their true color July 5th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||