Home > Press > Understanding gravity: The nanoscale search for extra dimensions: A Japan-US research collaboration involving Osaka University uses high-sensitivity experiments to probe exotic gravitational force
![]() |
Principle of the experimental test of the inverse-square law of the gravity in nano-meter scale via neutron scattering. Deviation from the inverse-square law will be observed as the modification in the angular distribution of the scattered neutrons. CREDIT The NOP collaboration |
Abstract:
Often, practical limits control the experimental measurements that can be made, governing the difference between what we expect to be true based on the most likely predictions of models and calculations, and findings that have been supported by testing. A team of researchers has now used the world's highest intensity neutron beamline facility, at J-PARC in central Japan, to push the limits of sensitivity for the study of gravitational force. The multicenter work probing the nm range was recently published in Physical Review D.
Most people are familiar with how things around us interact as a result of gravitational interactions. This behavior, known to follow an inverse square law (ISL), has been well explained by experiments down to less than 1 mm. Gravitational interactions over long-distances have also been supported by data collected from astronomy. However, until now, there has been little experimental evidence to support agreement with the ISL when the often-unpredictable quantum level is approached.
"There are numerous effects suggested by accepted theories of gravity over short distance ranges that could be borne out by experiment," study author Tatsushi Shima of Osaka University says. "By successfully extending the search range of an exotic gravity down to short distances of ~0.1 nm, we have been able to demonstrate the highest sensitivity reported to date, producing experimental data that will help to unravel the proposals."
The statistical sensitivity achieved was made possible using the high intensity pulsed neutron beam at the J-PARC facility. The net electromagnetic neutrality of neutrons means that the experiments were not influenced by the electromagnetic background that hampers other approaches to probing short distance ISL deviations. The experiment, based on neutron-noble gas scattering, was the first time-of-flight neutron scattering study.
"As the performance of the world's most powerful beamlines improves, we are able to significantly enhance our knowledge and understanding in step," study corresponding author Tamaki Yoshioka of Kyushu University says. "Such iterative improvements can be very revealing. In the case of gravitational interactions we have made substantial steps towards understanding the dimensions of the space around us."
It is hoped that the study, along with future work to improve sensitivity even further, will help shed light on whether the space in which we live is limited to three dimensions.
####
About Osaka University
Osaka University was founded in 1931 as one of the seven imperial universities of Japan and now has expanded to one of Japan's leading comprehensive universities. The University has now embarked on open research revolution from a position as Japan's most innovative university and among the most innovative institutions in the world according to Reuters 2015 Top 100 Innovative Universities and the Nature Index Innovation 2017. The university's ability to innovate from the stage of fundamental research through the creation of useful technology with economic impact stems from its broad disciplinary spectrum.
Website: http://resou.osaka-u.ac.jp/en/top
For more information, please click here
Contacts:
Saori Obayashi
81-661-055-886
Copyright © Osaka University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025
Quantum Physics
Physics
Govt.-Legislation/Regulation/Funding/Policy
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Possible Futures
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Discoveries
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Announcements
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Leading the charge to better batteries February 28th, 2025
Quantum interference in molecule-surface collisions February 28th, 2025
New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025
Research partnerships
SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025
Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024
Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024
Researchers’ approach may protect quantum computers from attacks March 8th, 2024
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |