Home > Press > Ultra-powerful batteries made safer, more efficient: Team aims to curb formation of harmful crystal-like masses in lithium metal batteries
Through simulations and experiments, the research team showed that a porous membrane stifled the formation of dendrites in lithium metal batteries. CREDIT University of Delaware/ Illustration by Joy Smoker |
Abstract:
From smartphones to electric vehicles, many of today's technologies run on lithium ion batteries. That means that consumers have to keep their chargers handy. An iPhone X battery only lasts for 21 hours of talk time, and Tesla's model S has a 335-mile range -- which means you could expect to make it from Newark, Delaware to Providence, Rhode Island, but not all the way to Boston, on one charge.
Scientists all over the world -- including even the inventor of lithium ion batteries himself, John Goodenough -- are looking for ways to make rechargeable batteries safer, lighter, and more powerful.
Now, an international team of researchers led by Bingqing Wei, a professor of mechanical engineering at the University of Delaware and the director of the Center for Fuel Cells and Batteries, is doing work that could lay the foundation for more widespread use of lithium metal batteries that would have more capacity than the lithium ion batteries commonly used in consumer electronics today. The team developed a method to mitigate dendrite formation in lithium metal batteries, which they have described in a paper published in Nano Letters.
The promise (and pitfalls) of lithium metal batteries
In a lithium ion battery, the anode, or current-generating side, is made of a material, such as graphite, with lithium ions bound to it. The lithium ions flow to the cathode, or current-collecting side.
In a lithium metal battery, the anode is made of lithium metal. Electrons flow from the anode to the cathode to generate electricity. Rechargeable batteries made of lithium metal hold a lot of promise because lithium is the most electrically positive metal and has a very high capacity.
"Theoretically, lithium metal is one of the best choices for batteries, but it is hard to handle in practice," Wei said.
Lithium metal batteries have been inefficient, unstable, and even a fire hazard thus far. Their performance is hampered by lithium dendrites, formations that look like tiny stalagmites made of lithium deposits. As a battery is being used, lithium ions collect on the anode. Over time, the lithium deposits become non-uniform, leading to the formations of these dendrites, which can cause the battery to short circuit.
A new understanding
Research groups around the world have tried a variety of techniques to suppress the formation and growth of these dendrites. After studying the literature, Wei had found that almost all of the techniques applied could be understood under an umbrella: Introducing a layer of porous material into the system could deter dendrites from collecting on the anode.
Using mathematical modeling, the research team found that a porous material suppressed the initiation and growth of dendrites. The dendrites that did form were 75 percent shorter than those that formed in systems that lacked the porous membrane. To further prove the finding, the team fabricated a membrane made of tiny wires of porous silicon nitride that measured less than one millionth of a meter each. They then integrated this membrane into lithium metal cells in a battery and ran it for 3,000 hours. No dendrites grew.
"This fundamental understanding may not be limited to the silicon nitride we used," Wei said. "Other porous structures may do this too."
What's more, this principle may also extend to other battery systems, such as zinc- or potassium-based batteries, he said.
"In this field of metal-based batteries, this is up-to-date understanding," he said. "This is the kind of work that could have high impact."
###
Wei's collaborators on this paper include: Nan Li, Wenfei Wei, Keyu Xie, Kai Yuan, Qiang Song, Hejun Li and Chao Shen of the Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene, Xi'an, China; Jinwang Tan and Emily M. Ryan of Boston University; Lin Zhang and Ling Liu of Utah State University; and Xiaodong Luo of Chongqing University of Science and Technology in Chongqing, China.
####
For more information, please click here
Contacts:
Peter Bothum
302-831-1418
Copyright © University of Delaware
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Possible Futures
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Materials/Metamaterials/Magnetoresistance
Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024
Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage
What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024
Research partnerships
Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024
Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024
Researchers’ approach may protect quantum computers from attacks March 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||