Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > A designer's toolkit for constructing complex nanoparticles

A new mix-and-match toolkit allows researchers to create a library of complex nanoparticles that could be used in medical, energy, and electronic applications. First-generation (G-1) spheres, rods, and plates transform into 47 increasingly sophisticated higher-generation (G-2, G-3, G-4) particles through sequences of chemical reactions. In the image, each color represents a distinct type of material, and electron microscope images are shown for several types of particles.
CREDIT
Schaak Laboratory, Penn State
A new mix-and-match toolkit allows researchers to create a library of complex nanoparticles that could be used in medical, energy, and electronic applications. First-generation (G-1) spheres, rods, and plates transform into 47 increasingly sophisticated higher-generation (G-2, G-3, G-4) particles through sequences of chemical reactions. In the image, each color represents a distinct type of material, and electron microscope images are shown for several types of particles. CREDIT Schaak Laboratory, Penn State

Abstract:
A team of chemists at Penn State has developed a designer's toolkit that lets them build various levels of complexity into nanoparticles using a simple, mix-and-match process. "Researchers in areas as diverse as medicine, energy, and electronics often design complex nanoscale particles that are predicted to have useful functions," said Raymond E. Schaak, DuPont Professor of Materials Chemistry at Penn State and the leader of the research team. "But making them in the laboratory is often the bottleneck. Our strategy can help to streamline this process." A paper describing the team's strategy and the large library of particles that they can now make appears May 4, 2018 in the journal Science.

A designer's toolkit for constructing complex nanoparticles

University Park, PA | Posted on May 5th, 2018

Scientists and engineers are getting better and better at designing nanoparticles to split water using sunlight, to diagnose and treat cancer, and to solve other important problems. Many of these 'designer' particles need to include various types of semiconductors, catalysts, magnets, and other materials to function, all while meeting strict requirements involving their size and shape.

"Synthesizing these complex particles becomes a really difficult challenge, because each one of these particles requires a tour-de-force effort to prepare, and that's not always practical," said Schaak. "We wanted to think in a more modular way to make this process easier."

The researchers begin with what they call first-generation particles that have nanometer-scale dimensions and are similar in size to viruses. These are simple, easy-to-make copper sulfide spheres, rods, and plates that serve as springboards for more complex derivatives. These first-generation particles define the initial size and shape, and after replacing some of the copper with other elements such as cadmium and zinc, they are transformed to second-generation particles that now include two materials. The new material is carved into a portion of the original copper sulfide, forming various types of lines or shapes. These lines represent the junctions between the two materials, defining frameworks within the particles and creating two-faced spheres, sandwich spheres, capped rods, striped rods, patchy plates, and marbled plates.

"The junctions bring an additional design element to the table," said Schaak. "Here, the materials within the particles are coupled together at the atomic level, and this can lead to additional functions because the materials can now 'talk' to each other. We can independently tune the outside shape and size of the particles, the materials that are inside the particles, and the ways in which they are connected."

All of the second-generation particles still contain some copper sulfide. This 'leftover' copper sulfide can also be replaced, producing third-generation particles that retain the first-generation size and shape and the second-generation junctions while containing completely different materials than the original first-generation particles. Higher-generation particles are made by further mixing and matching of various techniques and materials. Ultimately, the researchers easily generated a library of 47 distinct nanoparticles from the three simple first-generation spheres, rods, and plates.

Some of the particles the team has made are among the most complex reported to date, including non-symmetrical particles, particles with holes and notches in them, and intricately sculpted particles. "What is most exciting is how easily this works. We can sit down and draw a picture of a really complex particle that was unthinkable months ago, and then go in the lab and make it right away. This is truly a designer's toolkit," said Schaak.

###

In addition to Schaak, the research team included Julie L. Fenton and Benjamin C. Steimle at Penn State. The research was funded by U.S. National Science Foundation.

####

For more information, please click here

Contacts:
Barbara Kennedy

814-863-4682

Copyright © Penn State

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Nanofabrication

New chip opens door to AI computing at light speed February 16th, 2024

Researchers develop technique to synthesize water-soluble alloy nanoclusters January 12th, 2024

Shrinking hydrogels enlarge nanofabrication options: Researchers from Pittsburgh and Hong Kong print intricate, 2D and 3D patterns December 29th, 2022

Scientist mimic nature to make nano particle metallic snowflakes: Scientists in New Zealand and Australia working at the level of atoms created something unexpected: tiny metallic snowflakes December 9th, 2022

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Chip Technology

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Nanomedicine

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Energy

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Nanobiotechnology

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project