Home > Press > Engineered polymer membranes could be new option for water treatment
William Phillip, associate professor in the Department of Chemical and Biomolecular Engineering at Notre Dame. CREDIT Matt Cashore/University of Notre Dame |
Abstract:
The world's freshwater resources are in short supply. According to the United Nations, water scarcity affects an estimated 1.9 billion people and 2.1 billion people live with drinking water services that are not safely managed. The critical point of water scarcity has led scientists to look for new and efficient ways to make the most of nontraditional sources, including sea water, brackish water and wastewater.
Polymer membranes, which act as a filter to desalinate and selectively remove contaminants from various water sources, have aided water treatment, but their selectivity remains a significant challenge when it comes to filtering chemical properties -- a potential risk to the environment and human health.
Chemical and biomolecular engineers at the University of Notre Dame and Purdue University studied self-assembled block polymer membranes, which allow for both customizable and uniform pore sizes, as a platform for water treatment systems. The study, published in Nature Partner Journals -- Clean Water, determined the platform has the potential to advance water treatment technologies.
"Most state-of-the-art membranes for water treatment are designed to let water pass through while filtering contaminants," said William Phillip, associate professor in the Department of Chemical and Biomolecular Engineering at Notre Dame. "This approach limits the ability to remove or recover dissolved species based on their chemical identity. The exciting thing about self-assembled block polymer membranes is that you can engineer the nanostructure and pore wall chemistry of the membrane through the design of the block polymer molecules. This capability has the potential to open up a variety of new separation mechanisms that can isolate species based on chemical identity, which in turn could help to enable decentralized reuse of wastewater."
Phillip and the research team focused on block polymer membranes because of their well-defined nanostructures and functionality. They were able to molecularly engineer the chemical properties of the polymer to create large areas of high-performance membrane, reduce pore size and design multifunctional pore wall chemistries for solute-specific separation. The membranes could essentially be customized depending on the water source and treatment needed.
Membranes that are more selective and more resilient to certain exposures such as chlorine or boric acid and less prone to collecting unwanted properties -- or fouling -- than current state-of-the-art options could improve treatment in a number of ways. They could reduce the number of filtration passes required for irrigation, control concentrations of chlorine into the system to help forestall effects of biofouling and reduce chemical demands for membrane cleaning -- reducing operating costs and environmental impact.
The global applications are significant when considering those populations without suitable drinking water and limited resources.
Transitioning the technology from the laboratory setting to practice presents its own set of challenges that will need to be addressed in the coming years. However, the researchers are hopeful the transition can be made since several of the techniques used to generate self-assembled block polymers are consistent with current membrane fabrication practices.
###
Authors of the study include Yizhou Zhang and Jacob L. Weidman at Notre Dame and Noelia E. Almodovar-Arbelo, David S. Corti and Bryan W. Boudouris at Purdue University.
The Army Research Office and the National Science Foundation funded the study.
####
For more information, please click here
Contacts:
Jessica Sieff
574-631-3933
Copyright © University of Notre Dame
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Govt.-Legislation/Regulation/Funding/Policy
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Single atoms show their true color July 5th, 2024
Possible Futures
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Self Assembly
Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024
Liquid crystal templated chiral nanomaterials October 14th, 2022
Nanoclusters self-organize into centimeter-scale hierarchical assemblies April 22nd, 2022
Atom by atom: building precise smaller nanoparticles with templates March 4th, 2022
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Military
Single atoms show their true color July 5th, 2024
NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024
What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024
Environment
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
New method in the fight against forever chemicals September 13th, 2024
Water
Taking salt out of the water equation October 7th, 2022
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||