MENU

Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Detecting the birth and death of a phonon

Abstract:
Phonons are discrete units of vibrational energy predicted by quantum mechanics that correspond to collective oscillations of atoms inside a molecule or a crystal. When such vibrations are produced by light interacting with a material, the vibrational energy can be transferred back and forth between individual phonons and individual packets of light energy, the photons. This process is called the Raman effect.

Detecting the birth and death of a phonon

Lausanne, Switzerland | Posted on June 7th, 2018

In a new study, the lab of Christophe Galland at EPFL's Institute of Physics has developed a technique for measuring, in real time and at room-temperature, the creation and destruction of individual phonons, opening up exciting possibilities in various fields such as spectroscopy and quantum technologies.

The technique uses ultra-short laser pulses, which are bursts of light that last less than 10-13 seconds (a fraction of a trillionth of a second). First, one such pulse is shot onto a diamond crystal to excite a single phonon inside it. When this happens, a partner photon is created at a new wavelength through the Raman effect and is observed with a specialized detector, heralding the success of the preparation step.

Second, to interrogate the crystal and probe the newly created phonon, the scientists fire another laser pulse into the diamond. Thanks to another detector, they now record photons that have reabsorbed the energy of the vibration. These photons are witnesses that the phonon was still alive, meaning that the crystal was still vibrating with exactly the same energy.

This is in strong contradiction with our intuition: we are used to seeing vibrating objects progressively lose their energy over time, like a guitar string whose sound fades away. But in quantum mechanics this is "all or nothing": the crystal either vibrates with a specific energy or it is in its resting state; there is no state allowed in between. The decay of the phonon over time is therefore observed as a decrease of the probability of finding it in the excited state instead of having jumped down to the rest state.

Through this approach, the scientists could reconstruct the birth and death of a single phonon by analyzing the output of the two photon detectors. "In the language of quantum mechanics, the act of measuring the system after the first pulse creates a well-defined quantum state of the phonon, which is probed by the second pulse," says Christophe Galland. "We can therefore map the phonon decay with very fine time resolution by changing the time delay between the pulses from zero to a few trillionths of a second (10-12 seconds or picoseconds)."

The new technique can be applied to many different types of materials, from bulk crystals down to single molecules. It can also be refined to create more exotic vibrational quantum states, such as entangled states where energy is "delocalized" over two vibrational modes. And all this can be performed in ambient conditions, highlighting that exotic quantum phenomena may occur in our daily life - we just need to watch very fast.

####

For more information, please click here

Contacts:
Nik Papageorgiou
n.papageorgiou@epfl.ch
41-216-932-105

Copyright © Ecole Polytechnique Fédérale de Lausanne

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Reference

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

Quantum Physics

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Govt.-Legislation/Regulation/Funding/Policy

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Department of Energy announces $71 million for research on quantum information science enabled discoveries in high energy physics: Projects combine theory and experiment to open new windows on the universe January 17th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Possible Futures

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Leading the charge to better batteries February 28th, 2025

Quantum interference in molecule-surface collisions February 28th, 2025

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

Tools

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

New 2D multifractal tools delve into Pollock's expressionism January 17th, 2025

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Turning up the signal November 8th, 2024

Photonics/Optics/Lasers

Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024

Researchers succeed in controlling quantum states in a new energy range December 13th, 2024

Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

Dental

Getting to the root of tooth replantation challenges: Researchers from Tokyo Medical and Dental University (TMDU) report a delivery system that promotes healing in tooth replantation in rats September 17th, 2021

Innovations in dentistry: Navigational surgery, robotics, and nanotechnology October 2nd, 2020

First measurement of electron energy distributions, could enable sustainable energy technologies June 5th, 2020

Gas storage method could help next-generation clean energy vehicles: Tremendous amounts of hydrogen and methane can be stored in nanoscopic pores April 17th, 2020

Quantum nanoscience

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Department of Energy announces $71 million for research on quantum information science enabled discoveries in high energy physics: Projects combine theory and experiment to open new windows on the universe January 17th, 2025

Researchers succeed in controlling quantum states in a new energy range December 13th, 2024

Researchers uncover strong light-matter interactions in quantum spin liquids: Groundbreaking experiment supported by Rice researcher reveals new insights into a mysterious phase of quantum matter December 13th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project