Home > Press > A colossal breakthrough for topological spintronics: BiSb expands the potential of topological insulators for ultra-low-power electronic devices
Table 1: θSH: spin Hall angle, σ: conductivity, σSH: spin Hall conductivity. The figures in the bottom row are those achieved in the present study. Remarkably, the spin Hall conductivity, shown in the right-hand column, is two orders of magnitude greater than the previous record. CREDIT Pham Nam Hai |
Abstract:
Scientists have developed the world's best-performing pure spin current source[1] made of bismuth-antimony (BiSb) alloys, which they report as the best candidate for the first industrial application of topological insulators[2]. The achievement represents a big step forward in the development of spin-orbit torque magnetoresistive random-access memory (SOT-MRAM)[3] devices with the potential to replace existing memory technologies.
A research team led by Pham Nam Hai at the Department of Electrical and Electronic Engineering, Tokyo Institute of Technology (Tokyo Tech), has developed thin films of BiSb for a topological insulator that simultaneously achieves a colossal spin Hall effect[4] and high electrical conductivity.
Their study, published in Nature Materials, could accelerate the development of high-density, ultra-low power, and ultra-fast non-volatile memories for Internet of Things (IoT) and other applications now becoming increasingly in demand for industrial and home use.
The BiSb thin films achieve a colossal spin Hall angle of approximately 52, conductivity of 2.5 x 105 and spin Hall conductivity of 1.3×107 at room temperature. (See Table 1 for a performance summary, including all units.) Notably, the spin Hall conductivity is two orders of magnitude greater than that of bismuth selenide (Bi2Se3), reported in Nature in 2014.
Making SOT-MRAM a viable choice
Until now, the search for suitable spin Hall materials for next-generation SOT-MRAM devices has been faced with a dilemma: First, heavy metals such as platinum, tantalum and tungsten have high electrical conductivity but a small spin Hall effect. Second, topological insulators investigated to date have a large spin Hall effect but low electrical conductivity.
The BiSb thin films satisfy both requirements at room temperature. This raises the real possibility that BiSb-based SOT-MRAM could outperform the existing spin-transfer torque (STT) MRAM technology.
"As SOT-MRAM can be switched one order of magnitude faster than STT-MRAM, the switching energy can be reduced by at least two orders of magnitude," says Pham. "Also, the writing speed could be increased 20 times and the bit density increased by a factor of ten."
The viability of such energy-efficient SOT-MRAMs has recently been demonstrated in experiments, albeit using heavy metals, conducted by IMEC, the international R&D and innovation hub headquartered in Leuven, Belgium.
If scaled up successfully, BiSb-based SOT-MRAM could drastically improve upon its heavy metal-based counterparts and even become competitive with dynamic random access memory (DRAM), the dominant technology of today.
An attractive, overlooked material
BiSb has tended to be overlooked by the research community due to its small band gap[5] and complex surface states. However, Pham says: "From an electrical engineering perspective, BiSb is very attractive due to its high carrier mobility, which makes it easier to drive a current within the material."
"We knew that BiSb has many topological surface states, meaning we could expect a much stronger spin Hall effect. That's why we started studying this material about two years ago."
The thin films were grown using a high-precision method called molecular beam epitaxy (MBE). The researchers discovered a particular surface orientation named BiSb(012), which is thought to be a key factor behind the large spin Hall effect. Pham points out that the number of Dirac cones[6]0 on the BiSb(012) surface is another important factor, which his team is now investigating.
Challenges ahead
Pham is currently collaborating with industry to test and scale up BiSb-based SOT-MRAM.
"The first step is to demonstrate manufacturability," he says. "We aim to show it's still possible to achieve a strong spin Hall effect, even when BiSb thin films are fabricated using industry-friendly technologies such as the sputtering method."
"It's been over ten years since the emergence of topological insulators, but it was not clear whether those materials could be used in realistic devices at room temperature. Our research brings topological insulators to a new level, where they hold great promise for ultra-low power SOT-MRAM."
###
Technical terms
[1] Pure spin current: A phenomenon whereby spin angular momentum, but not charge, is transported.
[2] Topological insulators: Materials with highly electrically conductive surfaces, but which act as insulators on the inside. Such materials are of great interest in the quest to develop high-performing electronic devices that generate less heat.
[3] SOT-MRAM: Spin-orbit torque (SOT) switching using the spin Hall effect is increasingly viewed as a successor to conventional spin-transfer torque (STT) switching for magnetoresistive random-access memory (MRAM) technologies.
[4] Spin Hall effect: A Hall effect for spins originating from the coupling of charge and spin. Pure spin currents can be generated via the spin Hall effect.
[5] Band gap: An energy range in an insulator or semiconductor in which no electron states can exist.
[6] Dirac cones: Unique electronic structures that occur in topological insulators that represent linear energy dispersion.
####
For more information, please click here
Contacts:
Emiko Kawaguchi
81-357-342-975
Copyright © Tokyo Institute of Technology
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Thin films
Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024
Understanding the mechanism of non-uniform formation of diamond film on tools: Paving the way to a dry process with less environmental impact March 24th, 2023
New study introduces the best graphite films: The work by Distinguished Professor Feng Ding at UNIST has been published in the October 2022 issue of Nature Nanotechnology November 4th, 2022
Thin-film, high-frequency antenna array offers new flexibility for wireless communications November 5th, 2021
Possible Futures
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Spintronics
Quantum materials: Electron spin measured for the first time June 9th, 2023
Spin photonics to move forward with new anapole probe November 4th, 2022
Chip Technology
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Materials/Metamaterials/Magnetoresistance
Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024
Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Industrial
Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022
Nanotubes: a promising solution for advanced rubber cables with 60% less conductive filler June 1st, 2022
Protective equipment with graphene nanotubes meets the strictest ESD safety standards March 25th, 2022
OCSiAl receives the green light for Luxembourg graphene nanotube facility project to power the next generation of electric vehicles in Europe March 4th, 2022
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||