MENU

Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Superconductivity above 10 K discovered in a novel quasi-one-dimensional compound K2Mo3As3

A research team led by Dr. Zhian Ren from Institute of Physics, Chinese Academy of Sciences discovered a quasi-one-dimensional superconductor K2Mo3As3, with the Tc value exceeding 10 K for the first time. This newly synthesized K2Mo3As3 crystallizes in a noncentrosymmetric hexagonal structure containing of (Mo3As3)2? linear chains, with bulk superconductivity confirmed via physical property characterizations. This discovery provides new platforms to study the underlying unconventional superconducting mechanism within the low-dimensional crystal structures.

CREDIT
©Science China Press
A research team led by Dr. Zhian Ren from Institute of Physics, Chinese Academy of Sciences discovered a quasi-one-dimensional superconductor K2Mo3As3, with the Tc value exceeding 10 K for the first time. This newly synthesized K2Mo3As3 crystallizes in a noncentrosymmetric hexagonal structure containing of (Mo3As3)2? linear chains, with bulk superconductivity confirmed via physical property characterizations. This discovery provides new platforms to study the underlying unconventional superconducting mechanism within the low-dimensional crystal structures. CREDIT ©Science China Press

Abstract:
In the past century, superconductivity has been observed in thousands of substances with multifarious chemical compositions and crystal structures; however, researchers have still not found an explicit method for discovering new superconductors. For the unconventional high-Tc superconductors of cuprates and iron pnictides/chalcogenides, the occurrence of superconductivity is highly related to the existence of some certain quasi-two-dimensional structural motifs, e.g., the CuO2 planes or the Fe2As2/Fe2Se2 layers. Thus, low dimensionality has generally been considered as a favorable ingredient for exotic electron pairing due to the enhancement of electronic correlations. While among the quasi-one-dimensional (Q1D) compounds, only a few compounds were found to be superconducting at considerably low temperatures of several degrees Kelvin.

Superconductivity above 10 K discovered in a novel quasi-one-dimensional compound K2Mo3As3

Beijing, China | Posted on August 10th, 2018

Recently, a team led by Prof. Zhian Ren from the Institute of Physics, Chinese Academy of Sciences discovered a Q1D superconductor K2Mo3As3, with a Tc value exceeding 10 K for the first time. Although lots of molybdenum chalcogenide superconductors were discovered from the 1970's, ternary compounds of molybdenum arsenide have rarely been reported. After many efforts on studying Mo-based ternary phases, the team succeeded in synthesizing the new K2Mo3As3 compound, which crystalizes in a noncentrosymmetric hexagonal structure with typical Q1D (Mo3As3)2- linear chains separated by K+ cations, similar to the structure of K2Mo3As3. Bulk superconductivity below 10.4 K was confirmed by electrical resistivity, magnetic susceptibility, and heat capacity measurements. The K2Mo3As3 is the first MoAs-based superconductor and possesses the record Tc in all Q1D superconductors. This discovery indicates that Cr and Mo based Q1D superconductors may share some common underlying origins within the similar structural motifs and will help to uncover the exotic superconducting mechanism in low dimensional materials.

####

For more information, please click here

Contacts:
Zhian Ren
renzhian@iphy.ac.cn

Copyright © Science China Press

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

See the article:

Related News Press

Superconductivity

Lattice-driven charge density wave fluctuations far above the transition temperature in Kagome superconductor April 25th, 2025

News and information

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025

Possible Futures

Lattice-driven charge density wave fluctuations far above the transition temperature in Kagome superconductor April 25th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025

Discoveries

Lattice-driven charge density wave fluctuations far above the transition temperature in Kagome superconductor April 25th, 2025

An earth-abundant mineral for sustainable spintronics: Iron-rich hematite, commonly found in rocks and soil, turns out to have magnetic properties that make it a promising material for ultrafast next-generation computing April 25th, 2025

HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025

Nanophotonic platform boosts efficiency of nonlinear-optical quantum teleportation April 25th, 2025

Announcements

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Nanophotonic platform boosts efficiency of nonlinear-optical quantum teleportation April 25th, 2025

Quantum sensors tested for next-generation particle physics experiments: New research shows that the specialized sensors can detect particles more precisely April 25th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project