Home > Press > New devices based on rust could reduce excess heat in computers: Physicists explore long-distance information transmission in antiferromagnetic iron oxide
![]() |
An electrical current in a platinum wire (l.) creates a magnetic wave in the antiferromagnetic iron oxide (red and blue waves) to be measured as a voltage in a second platinum wire (r.). The arrows represent the antiferromagnetic order of the iron oxide. CREDIT Ill./©: Andrew Ross |
Abstract:
Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets. These materials make it possible to achieve computing speeds much faster than existing devices. Conventional devices using current technologies have the unwelcome side effect of getting hot and being limited in speed. This is slowing down the progress of information technology.
The emerging field of magnon spintronics aims to use insulating magnets capable of carrying magnetic waves, known as magnons, to help solve these problems. Magnon waves are able to carry information without the disadvantage of the production of excess heat. Physicists at Johannes Gutenberg University Mainz (JGU) in Germany, in cooperation with theorists from Utrecht University in the Netherlands and the Center for Quantum Spintronics (QuSpin) at the Norwegian University of Science and Technology (NTNU) in Norway, demonstrated that antiferromagnetic iron oxide, which is the main component of rust, is a cheap and promising material to transport information with low excess heating at increased speeds. Their study has been published recently in the scientific journal Nature.
By reducing the amount of heat produced, components can continue to become smaller alongside an increased information density. Antiferromagnets, the largest group of magnetic materials, have several crucial advantages over other commonly used magnetic components based on iron or nickel. For example, they are stable and unaffected by external magnetic fields, which is a key requirement for future data storage. Additionally, antiferromagnet-based devices can be potentially operated thousands of times faster than current technologies as their intrinsic dynamics are in the terahertz range, potentially exceeding a trillion operations per second.
Fast computers with antiferromagnetic insulators are within reach
In their study, the researchers used platinum wires on top of the insulating iron oxide to allow an electric current to pass close by. This electric current leads to a transfer of energy from the platinum into the iron oxide, thereby creating magnons. The iron oxide was found to carry information over the large distances needed for computing devices. "This result demonstrates the suitability of antiferromagnets to replace currently used components," said Dr. Romain Lebrun from the JGU Institute of Physics. "Devices based on fast antiferromagnet insulators are now conceivable," he continued.
Andrew Ross, one of the lead authors of the study, added: "If you are able to control insulating antiferromagnets, they can operate without excessive heat production and are robust against external perturbations." Professor Mathias Kläui, senior author of the paper, commented on the joint effort: "I am very happy that this work was achieved as an international collaboration. Internationalization is a key aim of our research group and in particular of our Graduate School of Excellence Materials Science in Mainz and the spintronics research center Spin+X. Collaborations with leading institutions globally, like the Center for Quantum Spintronics and Utrecht University enable such exciting research."
####
For more information, please click here
Contacts:
Dr. Mathias Klaeui
klaeui@uni-mainz.de
49-613-139-23633
Copyright © Johannes Gutenberg University Mainz
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Magnetism/Magnons
Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024
FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024
Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024
Three-pronged approach discerns qualities of quantum spin liquids November 17th, 2023
Possible Futures
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Spintronics
Quantum materials: Electron spin measured for the first time June 9th, 2023
Chip Technology
New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025
Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024
Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024
Discoveries
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Announcements
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Leading the charge to better batteries February 28th, 2025
Quantum interference in molecule-surface collisions February 28th, 2025
New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |