Home > Press > Silver nanoparticles are toxic for aquatic organisms: A research team at the UPV/EHU-University of the Basque Country has analysed how zebrafish are affected in the long term by exposure to silver particles
The UPV/EHU's Cell Biology in Environmental Toxicology research group has analysed adult zebrafish to find out the effects that in the long term can be caused by these silver particles present in fresh water CREDIT Egoi Markaida. UPV/EHU |
Abstract:
What stands out among the main conclusions of the study is the fact that the distribution of the metal in the organs of the fish is influenced by the form (soluble or nanoparticles) that the silver takes in the water. At the same time, soluble silver was also found to cause short-term alterations (three days) and nanoparticles longer-term alterations (21 days); and that in both cases the animals had purified themselves of the silver accumulated in their bodies after spending six months in clean waters, although inflammation of the gills was found to remain after being exposed to the metal.
In the study, led by Amaia Orbea, three groups of 50-60 adult zebrafish each were used in three aquaria. Silver nitrate was added to the first tank to produce water-soluble silver; 20-nm silver nanoparticles (NP Ag) were added to the second; clean water was added to the third which was used as the control. The groups in the contaminated tanks remained exposed to both forms of the metal for 21 days before spending a further six months in clean water for the purpose of studying the consequences of long-term exposure to silver. A concentration of metal regarded as environmentally significant was used, in other words, a concentration that could be found in nature, for example at the outfall of wastewater from treatment plants. The accumulation of a substance is the first step for intoxication to take place.
three and 21 days of exposure to silver and after six months in clean water various chemical and biological analyses were carried out on the gills, liver and intestines of the fish. The research team selected the gills because that is the main entry route of the contaminants; the liver because it is the main organ in metabolism and detoxification; and the intestine because the silver nanoparticles can be absorbed through food.
It can be deduced from the analyses that the fish accumulate similar concentrations of metal after being exposed to soluble silver and silver nanoparticles. And that after 6 months in clean water the initial metal concentration levels were recovered. The conclusions differed when the organs of the fish were analysed. The distribution of silver in the liver and intestines depended on the type of metal used in the treatment, but both treatments led to inflammation of the gills of the fish, an effect that remained even after six months in clean water.
Furthermore, the analysis of the transcriptome of the liver revealed a strong impact of exposure to silver. The effect of soluble silver was more intense after three days of exposure when changes were detected in the expression levels of a total of 410 genic sequences. In the case of silver nanoparticles, the alteration was detected 21 days later and affected 799 sequences.
####
For more information, please click here
Contacts:
Matxalen Sotillo
34-688-673-770
Copyright © University of the Basque Country
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Possible Futures
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Environment
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
New method in the fight against forever chemicals September 13th, 2024
Water
Taking salt out of the water equation October 7th, 2022
Safety-Nanoparticles/Risk management
Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023
Billions of nanoplastics released when microwaving baby food containers: Exposure to plastic particles kills up to 75% of cultured kidney cells July 21st, 2023
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||