Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Hall effect becomes viscous in graphene: Researchers at the University of Manchester in the UK have discovered that electrons in graphene act like a very unique liquid

Abstract:
Researchers at The University of Manchester in the UK have discovered that the Hall effect - a phenomenon well known for more than a century - is no longer as universal as it was thought to be.

Hall effect becomes viscous in graphene: Researchers at the University of Manchester in the UK have discovered that electrons in graphene act like a very unique liquid

Manchester, UK | Posted on February 28th, 2019

In the research paper published in Science this week, the group led by Prof Sir Andre Geim and Dr Denis Bandurin found that the Hall effect can even be signifcantly, if electrons strongly interact with each other giving rise to a viscous flow. The new phenomenon is important at room temperature - something that can have important implications for when making electronic or optoelectronic devices.

Just like molecules in gases and liquids, electrons in solids frequently collide with each other and can thus behave like viscous fluids too. Such electron fluids are ideal to find new behaviours of materials in which electron-electron interactions are particularly strong. The problem is that most materials are rarely pure enough to allow electrons to enter the viscous regime. This is because they contain many impurities off which electrons can scatter before they have time to interact with each other and organise a viscous flow.

Graphene can come in very useful here: the carbon sheet is a highly clean material that contains only a few defects, impurities and phonons (vibrations of the crystal lattice induced by temperature) so that electron-electron interactions become the main source of scattering, which leads to a viscous electron flow.

"In previous work, our group found that electron flow in graphene can have a viscosity as high as ?0.1 m2s-1, which is 100 times higher than that of honey," said Dr Bandurin "In this first demonstration of electron hydrodynamics, we discovered very unusual phenomena like negative resistance, electron whirlpools and superballistic flow."

Even more unusual effects occur when a magnetic field is applied to graphene's electrons when they are in the viscous regime. Theorists have already extensively studied electro-magnetohydrodynamics because of its relevance for plasmas in nuclear reactors and in neutron stars, as well as for fluid mechanics in general. But, no practical experimental system in which to test those predictions (such as large negative magnetoresistance and anomalous Hall resistivity) was readily available until now.

In their latest experiments, the Manchester researchers made graphene devices with many voltage probes placed at different distances from the electrical current path. Some of them were less than one micron from each other. Geim and colleagues showed that while the Hall effect is completely normal if measured at large distances from the current path, its magnitude rapidly diminishes if probed locally, using contacts close to the current injector.

"The behaviour is radically different from the standard textbook physics" says Alexey Berdyugin, a PhD student who conducted the experimental work. "We observe that if the voltage contacts are far from the current contacts, we measure the old, boring Hall effect, instead of this new 'viscous Hall effect'. But, if we place the voltage probes near the current injection points - the area in which viscosity shows up most dramatically as whirlpools in electron flow - then we find that the Hall effect diminishes.

"Qualitative changes in the electron flow caused by viscosity persist even at room temperature if graphene devices are smaller than one micron in size, says Berdyugin. "Since this size has become routine these days as far as electronic devices are concerned, the viscous effects are important when making or studying graphene devices."

####

For more information, please click here

Contacts:
Ben Robinson

01-612-750-134

Copyright © University of Manchester

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Graphene/ Graphite

Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

First human trial shows ‘wonder’ material can be developed safely: A revolutionary nanomaterial with huge potential to tackle multiple global challenges could be developed further without acute risk to human health, research suggests February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

Magnetism/Magnons

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Chip Technology

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Optical computing/Photonic computing

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Enhancing electron transfer for highly efficient upconversion: OLEDs Researchers elucidate the mechanisms of electron transfer in upconversion organic light-emitting diodes, resulting in improved efficiency August 16th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project