Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > New data on ultrafast electron photoemission from metallic nanostructures obtained: The results of the Russian-Japanese experiment explain the mechanism of electron photoemission by metallic nanostructures under ultrafast laser excitation

Abstract:
Metallic nanoparticle ensembles are capable of emitting short bunches of electrons when irradiated by powerful laser pulses of femtosecond (1 fs = 10-15 s) duration. Scientists at Lobachevsky University have long been studying the plasmon effect -- the excitation by light of collective electron oscillations in nanoparticles and the amplification of the light field associated with these oscillations in the vicinity of the nanoparticle, which plays the main role in this process. It is the plasmon amplification of the field that provides effective photoemission of electrons from a metal.

New data on ultrafast electron photoemission from metallic nanostructures obtained: The results of the Russian-Japanese experiment explain the mechanism of electron photoemission by metallic nanostructures under ultrafast laser excitation

Nizhnij Novgorod, Russia | Posted on May 23rd, 2019

The prospects for practical application of plasmon nanostructures are associated with their use as ultrafast photocathodes to create pulsed sources of high-brightness coherent X-ray radiation and to produce microscopes with high temporal resolution.

The photoemission of electrons from metallic nanoparticles is accompanied by the emission of terahertz radiation (its range in the scale of electromagnetic waves is between light and microwaves), which makes it possible to use this radiation as a tool for studying photoemission.

"The intensity of terahertz radiation depends non-linearly on the intensity of the laser pulse and demonstrates a high nonlinearity order (from 3 to 6 in various experiments). Although the mechanism of terahertz radiation generation by photoelectrons is not fully understood, it is believed that the high order of nonlinearity is explained by the multi-photon nature of electron emission, that is, by the need to transfer energy from several laser photons to the electron for performing the work to release the electron from the metal," explains Michael Bakunov, Head of the General Physics Department at Lobachevsky University.

To test the hypothesis of a multi-photon photoemission mechanism, scientists from Lobachevsky University together with their Japanese colleagues from Shinshu University, Osaka University and Tokyo Institute of Technology conducted an experiment in which the same metallic nanostructure, an array of gold nanorods ("golden nanoforest") was irradiated with powerful ultrashort light pulses of various wavelengths - from 600 nm to 1500 nm.

The result was surprising. Despite the fact that the energy of quanta differed more than twofold, the order of nonlinearity was approximately the same (4.5-4.8) for wavelengths from 720 to 1500 nm and even greater (6.6) for a wavelength of 600 nm (with the highest quantum energy).

"These results disprove the hypothesis of multi-photon emission of electrons. At the same time, the experimental dependences are in good agreement with the tunnel emission mechanism, whereby electrons are made to escape from the metal by a plasmon enhanced light field," concludes Michael Bakunov.

####

For more information, please click here

Contacts:
Nikita Avralev

Copyright © Lobachevsky University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The results of Russian and Japanese scientists' research were published in one of the leading scientific journals, Scientific Reports:

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Physics

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Finding quantum order in chaos May 17th, 2024

International research team uses wavefunction matching to solve quantum many-body problems: New approach makes calculations with realistic interactions possible May 17th, 2024

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Photonics/Optics/Lasers

New microscope offers faster, high-resolution brain imaging: Enhanced two-photon microscopy method could reveal insights into neural dynamics and neurological diseases August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Enhancing electron transfer for highly efficient upconversion: OLEDs Researchers elucidate the mechanisms of electron transfer in upconversion organic light-emitting diodes, resulting in improved efficiency August 16th, 2024

Single atoms show their true color July 5th, 2024

Research partnerships

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project