Home > Press > Russian scientists found an effective way to obtain fuel for hydrogen engines: One of the most promising alternative energy sources is hydrogen, which can be extracted from water and air
A catalyst is needed for a chemical process that releases hydrogen from an H2O molecule. It can be made, for example, from platinum, or from molybdenum. But these are quite expensive materials. Therefore, the output energy is expensive too. CREDIT Immanuel Kant Baltic Federal University |
Abstract:
One of the most promising alternative energy sources is hydrogen, which can be extracted from water and air. A catalyst is needed for a chemical process that releases hydrogen from an H2O molecule. It can be made, for example, from platinum, or from molybdenum. But these are quite expensive materials. Therefore, the output energy is expensive too.
The group of Russian scientists have invented a new approach to solving this problem and published the thesis on this topic in the Nanomaterials Journal.
Director of the IKBFU "Functional nanomaterials" Science and Education Center, Alexander Goykhman said:
"We propose molybdenum sulfide as a material for the catalysts which is, firstly, more effective than molybdenum, and, secondly, much cheaper since the total amount of expensive metal in catalysts is reduced, and the sulfur is not scarce and very cheap"
According to Alexander Goykhman, the material was created in the Moscow National Nuclear Research University, and the IKBFU scientists were to study the sulfur and find out whether it has all necessary parameters or not.
Prof. Goykhman said:
"Usually we grow the nanostructures and our colleagues in Moscow study them. But in this case, our roles are reversed. Nevertheless, the structures are fine and fully meet the expectations. We have managed to get the best suitable for catalyst process molybdenum sulfur"
The scientists that have found the more effective material for catalysts production also offered the most efficient way of using it.
Alexander Goykhman continues:
"To make an effective hydrogen engine one must pay attention not only to the constitution of the catalyst but also to the shape of it. We suggest using thin films of molybdenum sulfide deposited on the surface of glassy carbon. In this case, the material consumption will be minimal, and the surface area of the catalyst will be the same as if it was completely made from molybdenum sulfide. In the published work, a method for the deposition of such functional molybdenum sulfide films is proposed. It is also shown under what conditions of formation it is possible to achieve maximum catalyst efficiency"
According to Alexander Goykhman, this research may give an impetus to the hydrogen-based energy sector.
####
For more information, please click here
Contacts:
Sergey Bulanov
7-921-268-5362
@IKBFU
Copyright © Immanuel Kant Baltic Federal University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Possible Futures
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Energy
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Automotive/Transportation
Researchers’ approach may protect quantum computers from attacks March 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||