MENU

Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Quantum phenomenon governs organic solar cells: Vibronic coherence contributes to photocurrent generation in organic semiconductor heterojunction diodes

Olle Inganäs, professor emeritus, Linkoping University

CREDIT
Thor Balkhed
Olle Inganäs, professor emeritus, Linkoping University CREDIT Thor Balkhed

Abstract:
Researchers at Linköping University have discovered a quantum phenomenon that influences the formation of free charges in organic solar cells. "If we can properly understand what's going on, we can increase the efficiency", says Olle Inganäs, professor emeritus.

Quantum phenomenon governs organic solar cells: Vibronic coherence contributes to photocurrent generation in organic semiconductor heterojunction diodes

Linköping, Sweden | Posted on March 30th, 2020

Doctoral student Qingzhen Bian obtained unexpected results when he set up an experiment to optimise a solar cell material consisting of two light-absorbing polymers and an acceptor material. Olle Inganäs, professor emeritus in the Division of Biomolecular and Organic Electronics asked him to repeat the experiment to eliminate the possibility of measurement errors. Time after time, and in experiments carried out both at LiU and by colleagues in Lund, the same thing happened: a tiny periodic waveform lasting a few hundred femtoseconds appeared in the signature from the optical absorption as a photocurrent formed in the solar cell material. What was going on?

The explanation has been published in Nature Communications.

Some background: When light in the form of photons is absorbed in a semi-conducting polymer, an exciton forms. Excitons are bound electrone-hole pairs in the polymer. The electrons are not released, and the transport of charges, the photocurrent, does not arise. When the electron-donating polymer is mixed with a molecule that accepts electrons, the electrons can be released. The electrons then only need to take a small jump to become free, and the loss of energy is kept to a minimum. The holes and the electrons transport the photocurrent and the solar cell starts to produce electricity.

This has been well-known for a long time. However, the remarkable waveform then appeared in Qingzhen Bian's experiment.

"The only conceivable explanation is that coherence arises between the excited system and the separated charges. We asked the quantum chemists to look into this and the results we obtain in repeated experiments agree well with their calculations", says Olle Inganäs.

In the quantum scale, atoms vibrate, and they vibrate faster when they are heated. It is these vibrations that interact with each other in some way and with the excited system of electrons: the phases of the waves follow each other and a state of coherence arises.

"The coherence helps to create the charges that give the photocurrent, which takes place at room temperature. But we don't know why or how yet", says Olle Inganäs.

The same quantum coherence is found in the biological world.

"An intense debate is ongoing among biophysics researchers whether systems that use photosynthesis have learnt to exploit coherence or not. I find it unlikely that millions of years of evolution have not resulted in the natural world exploiting the phenomenon", says Olle Inganäs.

"If we understood better how the charge carriers are formed and how the process is controlled, we should be able to use it to increase the efficiency of organic solar cells. The vibrations depend on the structure of the molecule, and if we can design molecules that contribute to increasing the photocurrent, we can also use the phenomenon to our advantage", he says.

###

Principal source of funds for the research has been the Knut and Alice Wallenberg Foundation.

####

For more information, please click here

Contacts:
Olle Inganäs
olle.inganas@liu.se
46-132-81231

@liu_universitet

Copyright © Linköping University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Vibronic coherence contributes to photocurrent generation in organic semiconductor heterojunction diodes, Qingzhen Bian, Fei Ma, Shula Chen, Qi Wei, Xiaojun Su, Irina A. Buyanova, Weimin M. Chen, Carlito S. Ponseca Jr, Mathieu Linares, Khadga J. Karki, Arkady Yartsev & Olle Ingana?s. Nature Communications 2020. DOI 10.1038/s41467-020-14476-w:

Related News Press

Quantum Physics

Lattice-driven charge density wave fluctuations far above the transition temperature in Kagome superconductor April 25th, 2025

HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025

Quantum sensors tested for next-generation particle physics experiments: New research shows that the specialized sensors can detect particles more precisely April 25th, 2025

News and information

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025

Organic Electronics

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Efficient and stable hybrid perovskite-organic light-emitting diodes with external quantum efficiency exceeding 40 per cent July 5th, 2024

New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

Possible Futures

Lattice-driven charge density wave fluctuations far above the transition temperature in Kagome superconductor April 25th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025

Discoveries

Lattice-driven charge density wave fluctuations far above the transition temperature in Kagome superconductor April 25th, 2025

An earth-abundant mineral for sustainable spintronics: Iron-rich hematite, commonly found in rocks and soil, turns out to have magnetic properties that make it a promising material for ultrafast next-generation computing April 25th, 2025

HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025

Nanophotonic platform boosts efficiency of nonlinear-optical quantum teleportation April 25th, 2025

Materials/Metamaterials/Magnetoresistance

An earth-abundant mineral for sustainable spintronics: Iron-rich hematite, commonly found in rocks and soil, turns out to have magnetic properties that make it a promising material for ultrafast next-generation computing April 25th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024

Announcements

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Nanophotonic platform boosts efficiency of nonlinear-optical quantum teleportation April 25th, 2025

Quantum sensors tested for next-generation particle physics experiments: New research shows that the specialized sensors can detect particles more precisely April 25th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Energy

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Solar/Photovoltaic

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

Quantum nanoscience

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Department of Energy announces $71 million for research on quantum information science enabled discoveries in high energy physics: Projects combine theory and experiment to open new windows on the universe January 17th, 2025

Researchers succeed in controlling quantum states in a new energy range December 13th, 2024

Researchers uncover strong light-matter interactions in quantum spin liquids: Groundbreaking experiment supported by Rice researcher reveals new insights into a mysterious phase of quantum matter December 13th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project